找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Membrane Trafficking; Ales Vancura Book 2008 Humana Press 2008 DNA.Lipid.Mammalian cells.Membrane transport.Organelle.Translation.Yeast ce

[复制链接]
楼主: 不幸的你
发表于 2025-3-30 08:38:20 | 显示全部楼层
发表于 2025-3-30 16:08:31 | 显示全部楼层
发表于 2025-3-30 19:30:08 | 显示全部楼层
Heike Bauerschmitt,Soledad Funes,Johannes M. Herrmanntructions and protocols for practical application.This textbook is an excellent guide to microscopy for students and scientists, who use microscopy as one of their primary research and analysis tool in the laboratory. .The book covers key microscopy principles and explains the various techniques suc
发表于 2025-3-31 00:40:13 | 显示全部楼层
发表于 2025-3-31 03:34:49 | 显示全部楼层
Darryl Horn,Flavia Fontanesi,Antoni Barrientosbraic geometry, topology, and complex analysis.Discusses ove.This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results.  A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry h
发表于 2025-3-31 07:35:45 | 显示全部楼层
Jennifer Chang,Victoria Ruiz,Ales Vancurabraic geometry, topology, and complex analysis.Discusses ove.This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results.  A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry h
发表于 2025-3-31 11:28:53 | 显示全部楼层
Heimo Wolinski,Sepp D. Kohlweinbraic geometry, topology, and complex analysis.Discusses ove.This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results.  A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry h
发表于 2025-3-31 16:57:16 | 显示全部楼层
Kari-Pekka Skarp,Xueqiang Zhao,Marion Weber,Jussi Jänttiidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry has strong links to many other areas of mathematics, including algebraic geometry, topology, and complex analysis.  The authors emphasize these connections to create a unified and rigorous treatment of the subje
发表于 2025-3-31 17:53:28 | 显示全部楼层
发表于 2025-4-1 00:03:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 02:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表