找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Understanding and Analysis; 26th Annual Conferen Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S Conference proceedings 20

[复制链接]
查看: 38847|回复: 54
发表于 2025-3-21 16:26:04 | 显示全部楼层 |阅读模式
书目名称Medical Image Understanding and Analysis
副标题26th Annual Conferen
编辑Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Medical Image Understanding and Analysis; 26th Annual Conferen Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S Conference proceedings 20
描述.This book constitutes the refereed proceedings of the 26th Conference on Medical Image Understanding and Analysis, MIUA 2022, held in Cambridge, UK, in July 2022. ..The 65 full papers presented were carefully reviewed and selected from 95 submissions. They were organized according to following topical sections: biomarker detection; image registration, and reconstruction; image segmentation; generative models, biomedical simulation and modelling; classification; image enhancement, quality assessment, and data privacy; radiomics, predictive models, and quantitative imaging..Chapter “FCN-Transformer Feature Fusion for Polyp Segmentation” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com..
出版日期Conference proceedings 2022
关键词artificial intelligence; classification methods; color image processing; computer networks; computer sys
版次1
doihttps://doi.org/10.1007/978-3-031-12053-4
isbn_softcover978-3-031-12052-7
isbn_ebook978-3-031-12053-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Medical Image Understanding and Analysis影响因子(影响力)




书目名称Medical Image Understanding and Analysis影响因子(影响力)学科排名




书目名称Medical Image Understanding and Analysis网络公开度




书目名称Medical Image Understanding and Analysis网络公开度学科排名




书目名称Medical Image Understanding and Analysis被引频次




书目名称Medical Image Understanding and Analysis被引频次学科排名




书目名称Medical Image Understanding and Analysis年度引用




书目名称Medical Image Understanding and Analysis年度引用学科排名




书目名称Medical Image Understanding and Analysis读者反馈




书目名称Medical Image Understanding and Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:44:47 | 显示全部楼层
Multimodal Cardiomegaly Classification with Image-Derived Digital Biomarkers-derived digital biomarkers, the cardiothoracic ratio (CTR) and the cardiopulmonary area ratio (CPAR). The CTR and CPAR values are estimated using segmentation and detection models. These are then integrated into a multimodal network trained simultaneously on chest radiographs and ICU data (vital si
发表于 2025-3-22 00:45:42 | 显示全部楼层
Proton Density Fat Fraction of Breast Adipose Tissue: Comparison of the Effect of Fat Spectra and Inmarker which has not yet been thoroughly examined in the characterisation of breast fat; this work therefore explores the estimation of breast-specific PDFF. An MR spectrum derived from healthy breast fat is shown to perform significantly better in PDFF calculation of breast adipose tissue amongst a
发表于 2025-3-22 05:38:26 | 显示全部楼层
Revisiting the Shape-Bias of Deep Learning for Dermoscopic Skin Lesion Classificationrowing body of work aiming to align deep models’ decision-making processes with the fundamental properties of human vision. The reliance on shape features is primarily expected to improve the robustness of these models under covariate shift. In this paper, we revisit the significance of . for the cl
发表于 2025-3-22 10:12:27 | 显示全部楼层
发表于 2025-3-22 15:41:42 | 显示全部楼层
发表于 2025-3-22 20:39:29 | 显示全部楼层
发表于 2025-3-22 22:47:17 | 显示全部楼层
Faster Diffusion Cardiac MRI with Deep Learning-Based Breath Hold Reductionvo and non-invasively, which no other imaging modality allows. This innovative technology could revolutionise the ability to perform cardiac clinical diagnosis, risk stratification, prognosis and therapy follow-up. However, DT-CMR is currently inefficient with over six minutes needed to acquire a si
发表于 2025-3-23 03:58:19 | 显示全部楼层
发表于 2025-3-23 06:10:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 10:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表