找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Learning with Limited and Noisy Data; First International Ghada Zamzmi,Sameer Antani,Zhiyun Xue Conference proceedings 2022

[复制链接]
楼主: 无感觉
发表于 2025-3-26 21:26:35 | 显示全部楼层
Sara Atito,Syed Muhammad Anwar,Muhammad Awais,Josef Kittlerription of relevant assessment and intervention strategies. The role of the primary care practitioner is highlighted, both as a front-line resource as well as a consumer of specialized pediatric pain treatment 978-1-61737-929-1978-1-59745-476-6
发表于 2025-3-27 02:40:21 | 显示全部楼层
发表于 2025-3-27 07:55:54 | 显示全部楼层
发表于 2025-3-27 10:54:49 | 显示全部楼层
发表于 2025-3-27 17:06:07 | 显示全部楼层
发表于 2025-3-27 20:54:30 | 显示全部楼层
发表于 2025-3-28 01:35:34 | 显示全部楼层
Re-thinking and Re-labeling LIDC-IDRI for Robust Pulmonary Cancer Predictionertain nodules are added. We further infer that re-labeling LIDC is current an expedient way for robust lung cancer prediction while building a large pathological-proven nodule database provides the long-term solution.
发表于 2025-3-28 02:13:55 | 显示全部楼层
发表于 2025-3-28 09:56:38 | 显示全部楼层
Multi-Feature Vision Transformer via Self-Supervised Representation Learning for Improvement of COVIlti-feature Vision Transformer (ViT) guided architecture where we deploy a cross-attention mechanism to learn information from both original CXR images and corresponding enhanced local phase CXR images. By using 10% labeled CXR scans, the proposed model achieves 91.10% and 96.21% overall accuracy te
发表于 2025-3-28 10:45:01 | 显示全部楼层
SB-SSL: Slice-Based Self-supervised Transformers for Knee Abnormality Classification from MRIuring the pretraining stage. Herein, we propose a slice-based self-supervised deep learning framework (SB-SSL), a novel slice-based paradigm for classifying abnormality using knee MRI scans. We show that for a limited number of cases (<1000), our proposed framework is capable to identify anterior cr
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 11:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表