找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Learning with Limited and Noisy Data; First International Ghada Zamzmi,Sameer Antani,Zhiyun Xue Conference proceedings 2022

[复制链接]
查看: 54742|回复: 56
发表于 2025-3-21 16:06:23 | 显示全部楼层 |阅读模式
书目名称Medical Image Learning with Limited and Noisy Data
副标题First International
编辑Ghada Zamzmi,Sameer Antani,Zhiyun Xue
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Medical Image Learning with Limited and Noisy Data; First International  Ghada Zamzmi,Sameer Antani,Zhiyun Xue Conference proceedings 2022
描述.This book constitutes the proceedings of the First Workshop on Medical Image Learning with Limited and Noisy Data, MILLanD 2022, held in conjunction with MICCAI 2022. The conference was held in Singapore. For this workshop, 22 papers from 54 submissions were accepted for publication. They selected papers focus on the challenges and limitations of current deep learning methods applied to limited and noisy medical data and present new methods for training models using such imperfect data..
出版日期Conference proceedings 2022
关键词Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/978-3-031-16760-7
isbn_softcover978-3-031-16759-1
isbn_ebook978-3-031-16760-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Medical Image Learning with Limited and Noisy Data影响因子(影响力)




书目名称Medical Image Learning with Limited and Noisy Data影响因子(影响力)学科排名




书目名称Medical Image Learning with Limited and Noisy Data网络公开度




书目名称Medical Image Learning with Limited and Noisy Data网络公开度学科排名




书目名称Medical Image Learning with Limited and Noisy Data被引频次




书目名称Medical Image Learning with Limited and Noisy Data被引频次学科排名




书目名称Medical Image Learning with Limited and Noisy Data年度引用




书目名称Medical Image Learning with Limited and Noisy Data年度引用学科排名




书目名称Medical Image Learning with Limited and Noisy Data读者反馈




书目名称Medical Image Learning with Limited and Noisy Data读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:05:52 | 显示全部楼层
Medical Image Learning with Limited and Noisy Data978-3-031-16760-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 03:48:40 | 显示全部楼层
发表于 2025-3-22 05:17:43 | 显示全部楼层
Conference proceedings 2022with MICCAI 2022. The conference was held in Singapore. For this workshop, 22 papers from 54 submissions were accepted for publication. They selected papers focus on the challenges and limitations of current deep learning methods applied to limited and noisy medical data and present new methods for training models using such imperfect data..
发表于 2025-3-22 11:13:12 | 显示全部楼层
https://doi.org/10.1007/978-3-031-16760-7Computer Science; Informatics; Conference Proceedings; Research; Applications
发表于 2025-3-22 14:30:01 | 显示全部楼层
发表于 2025-3-22 19:51:07 | 显示全部楼层
Heatmap Regression for Lesion Detection Using Pointwise Annotationsection show our point-based method performs competitively compared to training on expensive segmentation labels. Finally, our detection model provides a suitable pre-training for segmentation. When fine-tuning on only 17 segmentation samples, we achieve comparable performance to training with the full dataset.
发表于 2025-3-23 00:19:04 | 显示全部楼层
发表于 2025-3-23 01:51:08 | 显示全部楼层
发表于 2025-3-23 06:44:42 | 显示全部楼层
0302-9743 selected papers focus on the challenges and limitations of current deep learning methods applied to limited and noisy medical data and present new methods for training models using such imperfect data..978-3-031-16759-1978-3-031-16760-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 11:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表