找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[复制链接]
楼主: hexagon
发表于 2025-3-23 12:11:17 | 显示全部楼层
Eye-Guided Dual-Path Network for Multi-organ Segmentation of Abdomend. To address this issue, we propose a novel network for abdominal multi-organ segmentation, which incorporates radiologists’ gaze information to boost high-precision segmentation and weaken the demand for high-cost manual labels. Our network includes three special designs: 1) a dual-path encoder to
发表于 2025-3-23 13:58:39 | 显示全部楼层
Scribble-Based 3D Multiple Abdominal Organ Segmentation via Triple-Branch Multi-Dilated Network withes from different receptive fields that are complementary to each other to generate high-quality soft pseudo labels. For more stable unsupervised learning, we use voxel-wise uncertainty to rectify the soft pseudo labels and then supervise the outputs of each decoder. To further regularize the networ
发表于 2025-3-23 21:26:32 | 显示全部楼层
Geometry-Adaptive Network for Robust Detection of Placenta Accreta Spectrum DisordersThe GA-RF module aggregates the multi-scale RoI features based on the geometry distribution of proposals. Moreover, we develop a Lesion-aware Detection Head (LA-Head) to leverage high-quality predictions to iteratively refine inaccurate annotations with a novel multiple instance learning paradigm. E
发表于 2025-3-24 00:31:58 | 显示全部楼层
Mammo-Net: Integrating Gaze Supervision and Interactive Information in Multi-view Mammogram Classifidirectional fusion learning (BFL) to more effectively fuse multi-view information. Experimental results demonstrate that our proposed model significantly improves both mammogram classification performance and interpretability through incorporation of gaze data and cross-view interactive information.
发表于 2025-3-24 03:58:20 | 显示全部楼层
发表于 2025-3-24 06:38:31 | 显示全部楼层
发表于 2025-3-24 12:28:56 | 显示全部楼层
Towards Expert-Amateur Collaboration: Prototypical Label Isolation Learning for Left Atrium Segmentae in the high-level feature space, the self-ensembling teacher model isolates clean and noisy labeled voxels by exploiting their relative feature distances to the class prototypes via multi-scale voting. Then, the student follows the teacher’s instruction for adaptive learning, wherein the clean vox
发表于 2025-3-24 15:06:49 | 显示全部楼层
发表于 2025-3-24 22:09:15 | 显示全部楼层
发表于 2025-3-24 23:32:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 04:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表