找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021; 24th International C Marleen de Bruijne,Philippe C. Cattin,Caroli

[复制链接]
楼主: CT951
发表于 2025-3-23 10:57:45 | 显示全部楼层
Chen Chen,Kerstin Hammernik,Cheng Ouyang,Chen Qin,Wenjia Bai,Daniel Rueckert
发表于 2025-3-23 17:09:52 | 显示全部楼层
Spyridon Thermos,Xiao Liu,Alison O’Neil,Sotirios A. Tsaftaris
发表于 2025-3-23 21:11:03 | 显示全部楼层
Joint Motion Correction and Super Resolution for Cardiac Segmentation via Latent Optimisation of cardiac imaging. To solve the inverse problem, iterative optimisation is performed in a latent space, which ensures the anatomical plausibility. This alleviates the need of paired low-resolution and high-resolution images for supervised learning. Experiments on two cardiac MR datasets show that
发表于 2025-3-24 00:48:49 | 显示全部楼层
发表于 2025-3-24 04:27:11 | 显示全部楼层
A Hierarchical Feature Constraint to Camouflage Medical Adversarial Attacksint (HFC) as an add-on to existing white-box attacks, which encourages hiding the adversarial representation in the normal feature distribution. We evaluate the proposed method on two public medical image datasets, namely Fundoscopy and Chest X-Ray. Experimental results demonstrate the superiority o
发表于 2025-3-24 06:51:59 | 显示全部楼层
Group Shift Pointwise Convolution for Volumetric Medical Image SegmentationTo address this problem, we propose a parameter-free operation, Group Shift (GS), which shifts the feature maps along different spatial directions in an elegant way. With GS, pointwise convolutions can access features from different spatial locations, and the limited receptive fields of pointwise co
发表于 2025-3-24 12:23:03 | 显示全部楼层
UTNet: A Hybrid Transformer Architecture for Medical Image Segmentatione amounts of data to learn vision inductive bias. Our hybrid layer design allows the initialization of Transformer into convolutional networks without a need of pre-training. We have evaluated UTNet on the multi-label, multi-vendor cardiac magnetic resonance imaging cohort. UTNet demonstrates superi
发表于 2025-3-24 15:24:42 | 显示全部楼层
AlignTransformer: Hierarchical Alignment of Visual Regions and Disease Tags for Medical Report Gener abnormal regions of the input image, which could alleviate data bias problem; 2) MGT module effectively uses the multi-grained features and Transformer framework to generate the long medical report. The experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achi
发表于 2025-3-24 22:23:28 | 显示全部楼层
发表于 2025-3-24 23:28:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 23:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表