找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Matrix Analysis; Rajendra Bhatia Textbook 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.approximation.calculus.Eigenvalue.exponentia

[复制链接]
查看: 49745|回复: 46
发表于 2025-3-21 16:30:57 | 显示全部楼层 |阅读模式
书目名称Matrix Analysis
编辑Rajendra Bhatia
视频video
丛书名称Graduate Texts in Mathematics
图书封面Titlebook: Matrix Analysis;  Rajendra Bhatia Textbook 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.approximation.calculus.Eigenvalue.exponentia
描述A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic lin­ ear algebra. The standard texts Finite-Dimens
出版日期Textbook 1997
关键词algebra; approximation; calculus; Eigenvalue; exponential function; inequality; linear algebra; matrices; ma
版次1
doihttps://doi.org/10.1007/978-1-4612-0653-8
isbn_softcover978-1-4612-6857-4
isbn_ebook978-1-4612-0653-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag Berlin Heidelberg 1997
The information of publication is updating

书目名称Matrix Analysis影响因子(影响力)




书目名称Matrix Analysis影响因子(影响力)学科排名




书目名称Matrix Analysis网络公开度




书目名称Matrix Analysis网络公开度学科排名




书目名称Matrix Analysis被引频次




书目名称Matrix Analysis被引频次学科排名




书目名称Matrix Analysis年度引用




书目名称Matrix Analysis年度引用学科排名




书目名称Matrix Analysis读者反馈




书目名称Matrix Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:27:59 | 显示全部楼层
Perturbation of Spectral Subspaces of Normal Matrices,their eigenvectors remain stubbornly apart. Note, however, that the . that these two eigenvectors of . and . span are identical. In this chapter we will see that interesting and useful perturbation bounds may be obtained for eigenspaces corresponding to closely bunched eigenvalues of normal matrices.
发表于 2025-3-22 02:33:32 | 显示全部楼层
Spectral Variation of Normal Matrices,orem: if . are two Hermitian matrices, then..In turn, this inequality is a special case of the inequality (IV.62), which says that if Eig↓ (.) denotes the diagonal matrix with entries λ↓. (.) down its diagonal, then we have for all Hermitian matrices . and for all unitarily invariant norms.
发表于 2025-3-22 06:58:30 | 显示全部楼层
Spectral Variation of Nonnormal Matrices,quality .(σ(.), σ(.)) ≤ 3|| .|| (Theorem VII.4.1). If one of the matrices . is Hermitian and the other is arbitrary, then we can only have an inequality of the form .(σ(.), σ(.)) ≤ .)||. — B||, where .) is a constant that grows like log . (Problems VI.8.8 and VI.8.9).
发表于 2025-3-22 11:29:00 | 显示全部楼层
发表于 2025-3-22 14:35:49 | 显示全部楼层
发表于 2025-3-22 20:22:47 | 显示全部楼层
发表于 2025-3-22 22:17:18 | 显示全部楼层
978-1-4612-6857-4Springer-Verlag Berlin Heidelberg 1997
发表于 2025-3-23 03:16:53 | 显示全部楼层
Matrix Analysis978-1-4612-0653-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
发表于 2025-3-23 06:52:06 | 显示全部楼层
Graduate Texts in Mathematicshttp://image.papertrans.cn/m/image/627736.jpg
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 02:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表