找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematics of Aperiodic Order; Johannes Kellendonk,Daniel Lenz,Jean Savinien Book 2015 Springer Basel 2015 Pisot substitution conjecture.

[复制链接]
楼主: DEBUT
发表于 2025-3-25 03:28:30 | 显示全部楼层
发表于 2025-3-25 09:17:00 | 显示全部楼层
Linearly Repetitive Delone Sets, repetitive.We present here some combinatorial, ergodic and mixing properties of their associated dynamical systems. We also give a characterization of such sets via the patch frequencies. Finally, we explain why a linearly repetitive Delone set is the image of a lattice by a bi-Lipschitz map.
发表于 2025-3-25 15:16:53 | 显示全部楼层
发表于 2025-3-25 19:28:07 | 显示全部楼层
Additive Properties of Sets and Substitutive Dynamics,points of weak mixing substitutions, we generate an assortment of central sets which reflect the rich combinatorial structure of the underlying words. One crucial additive property of central sets is that each central set contains all finite sums of distinct terms for some infinite increasing sequen
发表于 2025-3-25 20:24:40 | 显示全部楼层
Delone Sets and Material Science: a Program, to describe very precisely what the anankeons are. A partition of the configuration space into contiguity domains leads to a graph on which a Markov process can be built to describe the anakeon dynamics. At last, a speculative Section is giving an attempt to describe the Continuous Mechanics of a c
发表于 2025-3-26 03:50:13 | 显示全部楼层
Book 2015cs covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory..
发表于 2025-3-26 07:09:12 | 显示全部楼层
0743-1643 s or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory..978-3-0348-0903-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-26 10:41:38 | 显示全部楼层
Jean-Baptiste Aujogue,Marcy Barge,Johannes Kellendonk,Daniel Lenz
发表于 2025-3-26 16:13:43 | 显示全部楼层
José Aliste-Prieto,Daniel Coronel,María Isabel Cortez,Fabien Durand,Samuel Petite
发表于 2025-3-26 17:03:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表