找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Problems in Data Science; Theoretical and Prac Li M. Chen,Zhixun Su,Bo Jiang Book 2015 Springer International Publishing Switz

[复制链接]
查看: 10268|回复: 50
发表于 2025-3-21 19:30:10 | 显示全部楼层 |阅读模式
书目名称Mathematical Problems in Data Science
副标题Theoretical and Prac
编辑Li M. Chen,Zhixun Su,Bo Jiang
视频video
概述Explains the most current methods for solving cutting edge problems in data science and big data.Provides problem solving techniques and case studies.Covers a wide range of mathematical problems in da
图书封面Titlebook: Mathematical Problems in Data Science; Theoretical and Prac Li M. Chen,Zhixun Su,Bo Jiang Book 2015 Springer International Publishing Switz
描述.This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods.  For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark.   ..This book contains three parts.  The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematic
出版日期Book 2015
关键词Data science; Big data; Cloud data computing; Data modeling; Data relations; Data connectivity; Geometric
版次1
doihttps://doi.org/10.1007/978-3-319-25127-1
isbn_softcover978-3-319-79739-7
isbn_ebook978-3-319-25127-1
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Mathematical Problems in Data Science影响因子(影响力)




书目名称Mathematical Problems in Data Science影响因子(影响力)学科排名




书目名称Mathematical Problems in Data Science网络公开度




书目名称Mathematical Problems in Data Science网络公开度学科排名




书目名称Mathematical Problems in Data Science被引频次




书目名称Mathematical Problems in Data Science被引频次学科排名




书目名称Mathematical Problems in Data Science年度引用




书目名称Mathematical Problems in Data Science年度引用学科排名




书目名称Mathematical Problems in Data Science读者反馈




书目名称Mathematical Problems in Data Science读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:26:45 | 显示全部楼层
Introduction: Data Science and BigData Computinga. Today, we are supposed to find rules and properties in the data set, even among different data sets. In this chapter, we will explain data science and its relationship to BigData, cloud computing and data mining. We also discuss current research problems in data science and provide concerns relating to a baseline of the data science industry.
发表于 2025-3-22 03:24:01 | 显示全部楼层
发表于 2025-3-22 07:10:20 | 显示全部楼层
Li M. Chen,Zhixun Su,Bo JiangExplains the most current methods for solving cutting edge problems in data science and big data.Provides problem solving techniques and case studies.Covers a wide range of mathematical problems in da
发表于 2025-3-22 11:26:34 | 显示全部楼层
发表于 2025-3-22 15:56:53 | 显示全部楼层
发表于 2025-3-22 17:13:40 | 显示全部楼层
发表于 2025-3-22 21:51:57 | 显示全部楼层
Monte Carlo Methods and Their Applications in Big Data Analysis estimation of sum, Monte Carlo linear solver, image recovery, matrix multiplication, and low-rank approximation are shown as case studies to demonstrate the effectiveness of Monte Carlo methods in data analysis.
发表于 2025-3-23 01:49:53 | 显示全部楼层
发表于 2025-3-23 06:02:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 01:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表