找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Problems in Data Science; Theoretical and Prac Li M. Chen,Zhixun Su,Bo Jiang Book 2015 Springer International Publishing Switz

[复制链接]
楼主: 自由才谨慎
发表于 2025-3-26 22:26:37 | 显示全部楼层
Machine Learning for Data Science: Mathematical or Computationalal data sets. When more data samples are available, the algorithm must be able to adjust accordingly. Therefore, in cloud computing, and BigData related methods in data science, machine learning becomes the primary technology. We have introduced the PCA, .-NN and .-means, and other methods in artifi
发表于 2025-3-27 04:24:52 | 显示全部楼层
Images, Videos, and BigDatansider massive data processing. For instance, automated driving is a challenge to data science..In BigData related image processing, we will discuss the following topics in this chapter: (1) An overview of image and video segmentation, (2) Data storage and fast image segmentation, (3) Feature extrac
发表于 2025-3-27 08:41:47 | 显示全部楼层
发表于 2025-3-27 12:52:58 | 显示全部楼层
A New Computational Model of Bigdata between the slave nodes is considered impossible or too costly, and (3) an extra slave processor, together with the data it carries, can be easily integrated into the system to support scalability. Under such a model capturing the most important characteristics of a practical MapReduce system, some
发表于 2025-3-27 16:37:58 | 显示全部楼层
Book 2015ree parts.  The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematic
发表于 2025-3-27 21:39:41 | 显示全部楼层
Li M. Chenals: 2nd Workshop on Knowledge Graphs Analysis on a Large Scale, MADEISD: 5th Workshop on Modern Approaches in Data Engineering, Information System Design, PeRS978-3-031-42940-8978-3-031-42941-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-28 00:23:39 | 显示全部楼层
ic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematic978-3-319-79739-7978-3-319-25127-1
发表于 2025-3-28 02:46:15 | 显示全部楼层
发表于 2025-3-28 09:04:29 | 显示全部楼层
Overview of Basic Methods for Data Science graph search algorithms, statistical methods especially principal component analysis (PCA), algorithms and data structures, and data mining and pattern recognition. This chapter will provide an overview for machine learning in relation to other mathematical tools. We will first introduce graphs and
发表于 2025-3-28 12:03:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 18:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表