找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Mysteries; The Beauty and Magic Calvin C. Clawson Book 1996 Calvin C. Clawson 1996 algebra.Mathematica.mathematics

[复制链接]
查看: 43968|回复: 57
发表于 2025-3-21 19:10:20 | 显示全部楼层 |阅读模式
书目名称Mathematical Mysteries
副标题The Beauty and Magic
编辑Calvin C. Clawson
视频video
图书封面Titlebook: Mathematical Mysteries; The Beauty and Magic Calvin C. Clawson Book 1996 Calvin C. Clawson 1996 algebra.Mathematica.mathematics
出版日期Book 1996
关键词algebra; Mathematica; mathematics
版次1
doihttps://doi.org/10.1007/978-1-4899-6080-1
isbn_softcover978-0-306-45404-2
isbn_ebook978-1-4899-6080-1
copyrightCalvin C. Clawson 1996
The information of publication is updating

书目名称Mathematical Mysteries影响因子(影响力)




书目名称Mathematical Mysteries影响因子(影响力)学科排名




书目名称Mathematical Mysteries网络公开度




书目名称Mathematical Mysteries网络公开度学科排名




书目名称Mathematical Mysteries被引频次




书目名称Mathematical Mysteries被引频次学科排名




书目名称Mathematical Mysteries年度引用




书目名称Mathematical Mysteries年度引用学科排名




书目名称Mathematical Mysteries读者反馈




书目名称Mathematical Mysteries读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:33:54 | 显示全部楼层
发表于 2025-3-22 01:48:16 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-6080-1algebra; Mathematica; mathematics
发表于 2025-3-22 05:15:24 | 显示全部楼层
发表于 2025-3-22 12:15:47 | 显示全部楼层
Sequences and Series,of our counting sequence was certainly one of the greatest of all humankind. And we can use this sequence as a basis for generating even more sophisticated mathematical concepts. From the notion of a sequence we can evolve the concept of limits, one of the most elegant and beautiful ideas in all of mathematics.
发表于 2025-3-22 15:52:45 | 显示全部楼层
Into the Stratosphere,know if an infinity of twin primes exist, if either the Goldbach Conjecture or Riemann hypothesis is true. Many of us believe that given enough time and work, all these questions can be answered. Yet, is that the case? Given a statement in mathematics, can we say it is always possible to either prove or disprove it?
发表于 2025-3-22 17:24:46 | 显示全部楼层
发表于 2025-3-22 23:36:41 | 显示全部楼层
,Ramanujan’s Equations,We are now going to look at more of Ramanujan’s equations. I know that for some of you, the prospect of facing additional equations causes your heart to palpitate, and your palms to sweat. “Why,” you say, “does he have to use more of those darn equations? Why can’t he just say it in ordinary words?”
发表于 2025-3-23 03:40:25 | 显示全部楼层
http://image.papertrans.cn/m/image/626477.jpg
发表于 2025-3-23 06:22:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 03:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表