找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Challenges of Zero-Range Physics; Models, Methods, Rig Alessandro Michelangeli Conference proceedings 2021 The Editor(s) (if a

[复制链接]
楼主: 服装
发表于 2025-3-26 21:46:53 | 显示全部楼层
A Note on the Dirac Operator with Kirchoff-Type Vertex Conditions on Metric Graphs,In this note we present some properties of the Dirac operator on noncompact metric graphs with . vertex conditions. In particular, we discuss its spectral features and describe the associated quadratic form.
发表于 2025-3-27 04:38:41 | 显示全部楼层
发表于 2025-3-27 08:44:34 | 显示全部楼层
,Kreı̆n-Višik-Birman Self-Adjoint Extension Theory Revisited,The core results of the Kreı̆n-Višik-Birman theory of self-adjoint extensions of semi-bounded symmetric operators are reproduced, both in their original and in a more modern formulation, with a comprehensive discussion that includes missing details, elucidative steps, and intermediate results of independent interest.
发表于 2025-3-27 12:24:21 | 显示全部楼层
发表于 2025-3-27 16:05:08 | 显示全部楼层
Springer INdAM Serieshttp://image.papertrans.cn/m/image/626040.jpg
发表于 2025-3-27 20:59:04 | 显示全部楼层
978-3-030-60455-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-28 01:02:19 | 显示全部楼层
发表于 2025-3-28 04:53:55 | 显示全部楼层
Spectral Isoperimetric Inequality for the ,-Interaction on a Contour,on of a fixed strength, the support of which is a ..-smooth contour. Under the constraint of a fixed length of the contour, we prove that the lowest eigenvalue is maximized by the circle. The proof relies on the min-max principle and the method of parallel coordinates.
发表于 2025-3-28 08:49:57 | 显示全部楼层
发表于 2025-3-28 12:58:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 00:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表