找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Analysis of Continuum Mechanics and Industrial Applications II; Proceedings of the I Patrick van Meurs,Masato Kimura,Hirofumi

[复制链接]
楼主: 他剪短
发表于 2025-3-23 11:06:43 | 显示全部楼层
Mathematical Modeling of the Desiccation Crackingalysis methods, the typical geometry and the typical length scale of the desiccation crack pattern are reproduced in the complete homogeneous field without any artificial length scale. These results indicate that the proposed coupled model captures the fundamental mechanism for the pattern formation in desiccation cracking.
发表于 2025-3-23 15:02:02 | 显示全部楼层
Gradient Flows with Wiggly Potential: A Variational Approach to Dynamicsee different regimes ., . (Braides, Local Minimization, Variational Evolution and .-convergence. Springer, Cham (2014), [.]) and . (Ansini et al., Minimising movements for oscillating energies: the critical regime, [.]). We discuss for each case the existence of a pinning threshold, and we derive the limit equation describing the motion.
发表于 2025-3-23 22:04:51 | 显示全部楼层
Energy-Stable Numerical Schemes for Multiscale Simulations of Polymer–Solvent Mixturesnn/Molecular Dynamics scheme. These latter simulations provide initial conditions for the numerical solution of the macroscopic equations. This procedure is intended as a first step toward the development of a multiscale method that aims at combining the two models.
发表于 2025-3-24 01:58:48 | 显示全部楼层
发表于 2025-3-24 02:37:44 | 显示全部楼层
发表于 2025-3-24 09:25:28 | 显示全部楼层
发表于 2025-3-24 14:37:50 | 显示全部楼层
Shape Optimization by Generalized J-Integral in Poisson’s Equation with a Mixed Boundary Condition’s equation defined on a polygonal domain with mixed boundary condition. The boundary divides into the parts that Dirichlet boundary condition, Neumann boundary condition, and the joint of them are given. It is examined about each role of the parts of boundary in shape optimization process on a numerical example of finite element analysis.
发表于 2025-3-24 18:09:46 | 显示全部楼层
发表于 2025-3-24 19:41:58 | 显示全部楼层
Brief Introduction to Damage Mechanics and Its Relation to Deformationsmic mechanical setting in form of a second-order hyperbolic equation coupled with an ordinary differential equation for the damage evolution. We end with a note on a possible parameter identification setting.
发表于 2025-3-25 01:38:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 17:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表