找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Massively Parallel Evolutionary Computation on GPGPUs; Shigeyoshi Tsutsui,Pierre Collet Book 2013 Springer-Verlag Berlin Heidelberg 2013 A

[复制链接]
查看: 10166|回复: 56
发表于 2025-3-21 19:55:38 | 显示全部楼层 |阅读模式
书目名称Massively Parallel Evolutionary Computation on GPGPUs
编辑Shigeyoshi Tsutsui,Pierre Collet
视频video
概述First book dedicated to exciting new approach.Content characterized by emphasis on solving practical problems.Valuable for researchers, practitioners, and graduate students.Includes supplementary mate
丛书名称Natural Computing Series
图书封面Titlebook: Massively Parallel Evolutionary Computation on GPGPUs;  Shigeyoshi Tsutsui,Pierre Collet Book 2013 Springer-Verlag Berlin Heidelberg 2013 A
描述.Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened up this possibility for parallel EAs, and this is the first book dedicated to this exciting development.. .The three chapters of Part I are tutorials, representing a comprehensive introduction to the approach, explaining the characteristics of the hardware used, and presenting a representative project to develop a platform for automatic parallelization of evolutionary computing (EC) on GPGPUs. The 10 chapters in Part II focus on how to consider key EC approaches in the light of this advanced computational technique, in particular addressing generic local search, tabu search, genetic algorithms
出版日期Book 2013
关键词Artificial chemistries; CGP; Cartesian genetic programming; Clusters; Differential evolution; Evolutionar
版次1
doihttps://doi.org/10.1007/978-3-642-37959-8
isbn_softcover978-3-662-51345-3
isbn_ebook978-3-642-37959-8Series ISSN 1619-7127 Series E-ISSN 2627-6461
issn_series 1619-7127
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Massively Parallel Evolutionary Computation on GPGPUs影响因子(影响力)




书目名称Massively Parallel Evolutionary Computation on GPGPUs影响因子(影响力)学科排名




书目名称Massively Parallel Evolutionary Computation on GPGPUs网络公开度




书目名称Massively Parallel Evolutionary Computation on GPGPUs网络公开度学科排名




书目名称Massively Parallel Evolutionary Computation on GPGPUs被引频次




书目名称Massively Parallel Evolutionary Computation on GPGPUs被引频次学科排名




书目名称Massively Parallel Evolutionary Computation on GPGPUs年度引用




书目名称Massively Parallel Evolutionary Computation on GPGPUs年度引用学科排名




书目名称Massively Parallel Evolutionary Computation on GPGPUs读者反馈




书目名称Massively Parallel Evolutionary Computation on GPGPUs读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:22:57 | 显示全部楼层
发表于 2025-3-22 02:39:08 | 显示全部楼层
GPU-Accelerated High-Accuracy Molecular Docking Using Guided Differential Evolution average speedup of 3.9× on a four-core CPU and 27.4× on a comparable CUDA-enabled GPU when docking 133 ligands of different sizes. Furthermore, the presented parallelisation schemes are generally applicable and can easily be adapted to other flexible docking methods.
发表于 2025-3-22 06:14:22 | 显示全部楼层
发表于 2025-3-22 11:17:51 | 显示全部楼层
发表于 2025-3-22 13:02:53 | 显示全部楼层
发表于 2025-3-22 18:06:48 | 显示全部楼层
An Analytical Study of Parallel GA with Independent Runs on GPUsison to CPU computations, GPU computation shows a speedup of 7.2× and 13.1× on average using a single GTX 285 GPU and two GTX 285 GPUs, respectively. The parallel independent run model is the simplest of the various parallel evolutionary computation models, and among the models it demonstrates the lower limit performance.
发表于 2025-3-22 23:38:07 | 显示全部楼层
发表于 2025-3-23 03:45:28 | 显示全部楼层
Large-Scale Bioinformatics Data Mining with Parallel Genetic Programming on Graphics Processing Unitle data (SIMD) mode of parallel computing, even though the GP populations contain different programs. A 448 node nVidia Fermi C2050 Tesla graphics card delivers 8.5 giga GPops per second. In addition to describing our implementation, we survey current GPGPU work in bioinformatics and genetic programming.
发表于 2025-3-23 09:21:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 01:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表