找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Marine Pollution – Monitoring, Management and Mitigation; Amanda Reichelt-Brushett Textbook‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and

[复制链接]
楼主: Sentry
发表于 2025-3-23 13:23:24 | 显示全部楼层
发表于 2025-3-23 16:48:56 | 显示全部楼层
发表于 2025-3-23 20:13:54 | 显示全部楼层
发表于 2025-3-24 00:41:47 | 显示全部楼层
Amanda Reichelt-Brushettre named Reconstruction Swin Transformer (RST) for 4D MRI. RST inherits the backbone design of the Video Swin Transformer with a novel reconstruction head introduced to restore pixel-wise intensity. A convolution network called SADXNet is used for rapid initialization of 2D MR frames before RST lear
发表于 2025-3-24 06:18:53 | 显示全部楼层
发表于 2025-3-24 10:22:31 | 显示全部楼层
Amanda Reichelt-Brushett,Pelli L. Howe,Anthony A. Chariton,Michael St. J. Warneion of interest from the magnetic resonance imaging. Both branches are based on convolutional neural networks. After passing the exams by the two embedding branches, the output feature vectors are concatenated, and a multi-layer perceptron is used to classify the glioma biomarkers as a multi-class p
发表于 2025-3-24 12:33:38 | 显示全部楼层
Michelle Devlin,Jon Brodiereduce the total number of registrations required for a patient by an average factor of 27.5 while maintaining comparable registration quality. Additionally composing deformations further reduces the number of registrations by a factor of 1.86, resulting in an overall average reduction factor of 51.
发表于 2025-3-24 17:31:25 | 显示全部楼层
发表于 2025-3-24 22:35:41 | 显示全部楼层
Angela Carpenter,Amanda Reichelt-Brushettnce and explainability of CNN-based classification models. Additionally, we introduce an explainability metric to quantitatively evaluate the alignment of model attention with radiologist-specified regions of interest (ROIs). We demonstrate that combining the radiology reports with chest X-ray image
发表于 2025-3-25 01:15:36 | 显示全部楼层
Michael St. J. Warne,Amanda Reichelt-Brushettnce and explainability of CNN-based classification models. Additionally, we introduce an explainability metric to quantitatively evaluate the alignment of model attention with radiologist-specified regions of interest (ROIs). We demonstrate that combining the radiology reports with chest X-ray image
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 00:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表