找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning: ECML 2007; 18th European Confer Joost N. Kok,Jacek Koronacki,Andrzej Skowron Conference proceedings 2007 Springer-Verlag

[复制链接]
查看: 38384|回复: 61
发表于 2025-3-21 18:04:19 | 显示全部楼层 |阅读模式
书目名称Machine Learning: ECML 2007
副标题18th European Confer
编辑Joost N. Kok,Jacek Koronacki,Andrzej Skowron
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning: ECML 2007; 18th European Confer Joost N. Kok,Jacek Koronacki,Andrzej Skowron Conference proceedings 2007 Springer-Verlag
描述The two premier annual European conferences in the areas of machine learning and data mining have been collocated ever since the ?rst joint conference in Freiburg, 2001. The European Conference on Machine Learning (ECML) traces its origins to 1986, when the ?rst European Working Session on Learning was held in Orsay, France. The European Conference on Principles and Practice of KnowledgeDiscoveryinDatabases(PKDD) was?rstheldin1997inTrondheim, Norway. Over the years, the ECML/PKDD series has evolved into one of the largest and most selective international conferences in machine learning and data mining. In 2007, the seventh collocated ECML/PKDD took place during September 17–21 on the centralcampus of WarsawUniversityand in the nearby Staszic Palace of the Polish Academy of Sciences. The conference for the third time used a hierarchical reviewing process. We nominated 30 Area Chairs, each of them responsible for one sub-?eld or several closely related research topics. Suitable areas were selected on the basis of the submission statistics for ECML/PKDD 2006 and for last year’s International Conference on Machine Learning (ICML 2006) to ensure a proper load balance amongtheAreaChairs.
出版日期Conference proceedings 2007
关键词active learning; algorithmic learning; algorithms; classifier systems; cognition; genetic programming; ind
版次1
doihttps://doi.org/10.1007/978-3-540-74958-5
isbn_softcover978-3-540-74957-8
isbn_ebook978-3-540-74958-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

书目名称Machine Learning: ECML 2007影响因子(影响力)




书目名称Machine Learning: ECML 2007影响因子(影响力)学科排名




书目名称Machine Learning: ECML 2007网络公开度




书目名称Machine Learning: ECML 2007网络公开度学科排名




书目名称Machine Learning: ECML 2007被引频次




书目名称Machine Learning: ECML 2007被引频次学科排名




书目名称Machine Learning: ECML 2007年度引用




书目名称Machine Learning: ECML 2007年度引用学科排名




书目名称Machine Learning: ECML 2007读者反馈




书目名称Machine Learning: ECML 2007读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:02:50 | 显示全部楼层
Neighborhood-Based Local Sensitivitycal sensitivity. The resulting estimates demonstrate improved performance when used in classifier combination and classifier recalibration as well as being potentially useful in active learning and a variety of other problems.
发表于 2025-3-22 04:11:26 | 显示全部楼层
发表于 2025-3-22 04:46:59 | 显示全部楼层
Level Learning Set: A Novel Classifier Based on Active Contour Modelss in its ability to directly construct complex decision boundaries, and in better knowledge representation. Various experimental results including comparisons to existing machine learning algorithms are presented, and the advantages of the proposed approach are discussed.
发表于 2025-3-22 09:49:59 | 显示全部楼层
Learning Partially Observable Markov Models from First Passage Timesransitions with the lowest expected passage times are trimmed off from the model. Practical evaluations on artificially generated data and on DNA sequence modeling show the benefits over Bayesian model induction or EM estimation of ergodic models with transition trimming.
发表于 2025-3-22 14:18:45 | 显示全部楼层
发表于 2025-3-22 19:25:12 | 显示全部楼层
发表于 2025-3-23 00:37:09 | 显示全部楼层
发表于 2025-3-23 05:24:33 | 显示全部楼层
发表于 2025-3-23 07:22:08 | 显示全部楼层
Constraint Selection by Committee: An Ensemble Approach to Identifying Informative Constraints for Srmative, if known. An evaluation on text data shows that this provides an effective criterion for identifying constraints, leading to a reduction in the level of supervision required to direct a clustering algorithm to an accurate solution.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 00:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表