找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning-Augmented Spectroscopies for Intelligent Materials Design; Nina Andrejevic Book 2022 The Editor(s) (if applicable) and Th

[复制链接]
查看: 43327|回复: 39
发表于 2025-3-21 19:12:18 | 显示全部楼层 |阅读模式
书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design
编辑Nina Andrejevic
视频video
概述Nominated as an outstanding PhD thesis by Massachusetts Institute of Technology.Introduces machine learning methods for neutron and photon scattering and spectroscopy.Identifies spectral signatures of
丛书名称Springer Theses
图书封面Titlebook: Machine Learning-Augmented Spectroscopies for Intelligent Materials Design;  Nina Andrejevic Book 2022 The Editor(s) (if applicable) and Th
描述.The thesis contains several pioneering results at the intersection of state-of-the-art materials characterization techniques and machine learning. The use of machine learning empowers the information extraction capability of neutron and photon spectroscopies. In particular, new knowledge and new physics insights to aid spectroscopic analysis may hold great promise for next-generation quantum technology. As a prominent example, the so-called proximity effect at topological material interfaces promises to enable spintronics without energy dissipation and quantum computing with fault tolerance, yet the characteristic spectral features to identify the proximity effect have long been elusive. The work presented within permits a fine resolution of its spectroscopic features and a determination of the proximity effect which could aid further experiments with improved interpretability. A few novel machine learning architectures are proposed in this thesis work which leverage the case when the data is scarce and utilize the internal symmetry of the system to improve the training quality. The work sheds light on future pathways to apply machine learning to augment experiments..
出版日期Book 2022
关键词machine learning for materials characterization; machine learning Raman spectra; machine learning neut
版次1
doihttps://doi.org/10.1007/978-3-031-14808-8
isbn_softcover978-3-031-14810-1
isbn_ebook978-3-031-14808-8Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design影响因子(影响力)




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design影响因子(影响力)学科排名




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design网络公开度




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design网络公开度学科排名




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design被引频次




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design被引频次学科排名




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design年度引用




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design年度引用学科排名




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design读者反馈




书目名称Machine Learning-Augmented Spectroscopies for Intelligent Materials Design读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:22:40 | 显示全部楼层
发表于 2025-3-22 02:44:55 | 显示全部楼层
Nina AndrejevicNominated as an outstanding PhD thesis by Massachusetts Institute of Technology.Introduces machine learning methods for neutron and photon scattering and spectroscopy.Identifies spectral signatures of
发表于 2025-3-22 06:36:25 | 显示全部楼层
发表于 2025-3-22 11:47:07 | 显示全部楼层
Conclusion and Outlook,In this chapter, we summarize the primary contributions of this thesis work and offer a short perspective on the possible extensions of each study, concluding with a discussion of outstanding challenges and emerging approaches in the field.
发表于 2025-3-22 14:58:16 | 显示全部楼层
https://doi.org/10.1007/978-3-031-14808-8machine learning for materials characterization; machine learning Raman spectra; machine learning neut
发表于 2025-3-22 19:23:46 | 显示全部楼层
发表于 2025-3-23 00:08:12 | 显示全部楼层
发表于 2025-3-23 03:18:00 | 显示全部楼层
Nina Andrejevicrked control and multi-agent systems.Written by experts in tThis authored monograph presents a study on fundamental limits and robustness of stability and stabilization of time-delay systems, with an emphasis on time-varying delay, robust stabilization, and newly emerged areas such as networked cont
发表于 2025-3-23 09:35:05 | 显示全部楼层
Introduction,ctural and dynamical properties at atomic to mesoscopic length scales. As advances at scientific user facilities enable the collection of ever larger data volumes in higher-dimensional parameter spaces, the design, analysis, and interpretation of such experiments becomes both increasingly valuable a
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表