找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning, Optimization, and Data Science; 9th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202

[复制链接]
楼主: Truman
发表于 2025-3-30 12:14:11 | 显示全部楼层
Integrated Human-AI Forecasting for Preventive Maintenance Task Duration Estimationrom two fleet maintenance facilities in Canada, containing more than 13,000 anonymized historical ship work orders (WO) ranging from 2017 to 2022. We used supervised learning algorithms to forecast the preventive maintenance task duration on this data, with and without expert task duration estimates
发表于 2025-3-30 14:22:47 | 显示全部楼层
A Proximal Algorithm for Network Slimming CNNs is optional. Using Kurdyka-Łojasiewicz assumptions, we establish global convergence of proximal NS. Lastly, we validate the efficacy of the proposed algorithm on VGGNet, DenseNet and ResNet on CIFAR 10/100. Our experiments demonstrate that after one round of training, proximal NS yields a CNN
发表于 2025-3-30 18:09:50 | 显示全部楼层
发表于 2025-3-30 21:12:02 | 显示全部楼层
Alternating Mixed-Integer Programming and Neural Network Training for Approximating Stochastic Two-Sour approach with the example of computing operating points in power systems by showing that the alternating approach provides improved first-stage decisions and a tighter approximation between the expected objective and its neural network approximation.
发表于 2025-3-31 01:12:04 | 显示全部楼层
发表于 2025-3-31 05:49:41 | 显示全部楼层
发表于 2025-3-31 12:38:24 | 显示全部楼层
发表于 2025-3-31 14:41:58 | 显示全部楼层
A Hybrid Steady-State Genetic Algorithm for the Minimum Conflict Spanning Tree Problemle 12 instances of type 1 benchmark instances whose conflict solutions are not known show that the proposed hybrid approach hSSGA is able to find better solution quality in comparison to state-of-the-art approaches. Also, hSSGA discovers new values on 8 instances out of 12 instances of type 1.
发表于 2025-3-31 21:16:56 | 显示全部楼层
Evaluation of Selected Autoencoders in the Context of End-User Experience Managementerature as well-suited for detecting anomalies applied in this paper to hardware telemetry: Autoencoder (AE), Variational Autoencoder (VAE), and Deep Autoencoding Gaussian Mixture Model (DAEGMM). The results show that all three models provide anomaly detection in hardware telemetry data, though with
发表于 2025-4-1 01:06:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 02:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表