找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning, Optimization, and Data Science; 9th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202

[复制链接]
查看: 39471|回复: 66
发表于 2025-3-21 19:28:14 | 显示全部楼层 |阅读模式
书目名称Machine Learning, Optimization, and Data Science
副标题9th International Co
编辑Giuseppe Nicosia,Varun Ojha,Renato Umeton
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning, Optimization, and Data Science; 9th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202
描述.This book constitutes the refereed proceedings of the 9th International Conference on Machine Learning, Optimization, and Data Science, LOD 2023, which took place in Grasmere, UK, in September 2023. .The 72 full papers included in this book were carefully reviewed and selected from 119 submissions. The proceedings also contain 9 papers from and the Third Symposium on Artificial Intelligence and Neuroscience, ACAIN 2023. The contributions focus on the state of the art and the latest advances in the integration of machine learning, deep learning, nonlinear optimization and data science to provide and support the scientific and technological foundations for interpretable, explainable and trustworthy AI. .
出版日期Conference proceedings 2024
关键词computer security; evolutionary algorithms; fuzzy control; image processing; database systems; artificial
版次1
doihttps://doi.org/10.1007/978-3-031-53966-4
isbn_softcover978-3-031-53965-7
isbn_ebook978-3-031-53966-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)




书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)学科排名




书目名称Machine Learning, Optimization, and Data Science网络公开度




书目名称Machine Learning, Optimization, and Data Science网络公开度学科排名




书目名称Machine Learning, Optimization, and Data Science被引频次




书目名称Machine Learning, Optimization, and Data Science被引频次学科排名




书目名称Machine Learning, Optimization, and Data Science年度引用




书目名称Machine Learning, Optimization, and Data Science年度引用学科排名




书目名称Machine Learning, Optimization, and Data Science读者反馈




书目名称Machine Learning, Optimization, and Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:26:59 | 显示全部楼层
发表于 2025-3-22 02:16:43 | 显示全部楼层
0302-9743 2023, which took place in Grasmere, UK, in September 2023. .The 72 full papers included in this book were carefully reviewed and selected from 119 submissions. The proceedings also contain 9 papers from and the Third Symposium on Artificial Intelligence and Neuroscience, ACAIN 2023. The contributio
发表于 2025-3-22 08:33:52 | 显示全部楼层
Exploring Image Transformations with Diffusion Models: A Survey of Applications and Implementation Cions. The applications are presented in a practical and concise manner, facilitating the understanding of concepts behind diffusion models and how they function. Additionally, it includes a curated collection of GitHub repositories featuring popular examples of these subjects.
发表于 2025-3-22 12:23:40 | 显示全部楼层
发表于 2025-3-22 16:29:31 | 显示全部楼层
Deep Learning Model of Two-Phase Fluid Transport Through Fractured Media: A Real-World Case Studyest the sensitivity of our method to the type of optimizer and learning rate, time step size and the number of timesteps, DNN architecture, and spatial resolution. The results of computational experiments on a real-world problem prove a good numerical stability of the solution, its computational efficiency and high precision of the PINN model.
发表于 2025-3-22 18:46:52 | 显示全部楼层
发表于 2025-3-23 00:45:36 | 显示全部楼层
发表于 2025-3-23 03:31:34 | 显示全部楼层
Reinforcement Learning for Multi-Neighborhood Local Search in Combinatorial Optimizationalready obtained remarkable results using offline tuning techniques. Experimental data show that our approach obtains better results than the analogous algorithm that uses state-of-the-art offline tuning on benchmarking datasets while requiring less tuning effort.
发表于 2025-3-23 08:27:33 | 显示全部楼层
Social Media Analysis: The Relationship Between Private Investors and Stock Pricesing natural language processing (NLP), this paper examines reasons for the correlation between public sentiments and stock price fluctuations in the United States. Further, we demonstrate these correlations and provide promising directions for future research.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 01:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表