找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Finance; From Theory to Pract Matthew F. Dixon,Igor Halperin,Paul Bilokon Textbook 2020 Springer Nature Switzerland AG

[复制链接]
查看: 14828|回复: 50
发表于 2025-3-21 19:07:04 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Finance
副标题From Theory to Pract
编辑Matthew F. Dixon,Igor Halperin,Paul Bilokon
视频video
概述Introduces fundamental concepts in machine learning for canonical modeling and decision frameworks in finance.Presents a unified treatment of machine learning, financial econometrics and discrete time
图书封面Titlebook: Machine Learning in Finance; From Theory to Pract Matthew F. Dixon,Igor Halperin,Paul Bilokon Textbook 2020 Springer Nature Switzerland AG
描述.This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance...Machine Learning in Finance: From Theory to Practice. is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesianand frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. T
出版日期Textbook 2020
关键词Machine Learning; Financial Mathematics; Financial Econometrics; Neural Networks; Bayesian Neural Networ
版次1
doihttps://doi.org/10.1007/978-3-030-41068-1
isbn_softcover978-3-030-41070-4
isbn_ebook978-3-030-41068-1
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Machine Learning in Finance影响因子(影响力)




书目名称Machine Learning in Finance影响因子(影响力)学科排名




书目名称Machine Learning in Finance网络公开度




书目名称Machine Learning in Finance网络公开度学科排名




书目名称Machine Learning in Finance被引频次




书目名称Machine Learning in Finance被引频次学科排名




书目名称Machine Learning in Finance年度引用




书目名称Machine Learning in Finance年度引用学科排名




书目名称Machine Learning in Finance读者反馈




书目名称Machine Learning in Finance读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:07:05 | 显示全部楼层
发表于 2025-3-22 04:27:14 | 显示全部楼层
发表于 2025-3-22 05:02:47 | 显示全部楼层
Textbook 2020al disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources a
发表于 2025-3-22 09:40:48 | 显示全部楼层
发表于 2025-3-22 15:18:51 | 显示全部楼层
发表于 2025-3-22 18:48:04 | 显示全部楼层
发表于 2025-3-22 21:15:55 | 显示全部楼层
发表于 2025-3-23 03:23:37 | 显示全部楼层
发表于 2025-3-23 05:44:51 | 显示全部楼层
Bayesian Regression and Gaussian Processesrning methods—specifically Gaussian process regression, an important class of Bayesian machine learning methods—and demonstrate their application to “surrogate” models of derivative prices. This chapter also provides a natural starting point from which to develop intuition for the role and functiona
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 16:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表