找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Ecology and Sustainable Natural Resource Management; Grant Humphries,Dawn R. Magness,Falk Huettmann Book 2018 Springe

[复制链接]
查看: 22674|回复: 53
发表于 2025-3-21 19:02:31 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Ecology and Sustainable Natural Resource Management
编辑Grant Humphries,Dawn R. Magness,Falk Huettmann
视频video
概述Shows ecologists cutting-edge methods that can help in understanding complex systems with multiple interacting variablesto and to form predictive hypotheses from large datasets.Provides practical exam
图书封面Titlebook: Machine Learning for Ecology and Sustainable Natural Resource Management;  Grant Humphries,Dawn R. Magness,Falk Huettmann Book 2018 Springe
描述.Ecologists and natural resource managers are charged with making complex management decisions in the face of a rapidly changing environment resulting from climate change, energy development, urban sprawl, invasive species and globalization. Advances in Geographic Information System (GIS) technology, digitization, online data availability, historic legacy datasets, remote sensors and the ability to collect data on animal movements via satellite and GPS have given rise to large, highly complex datasets. These datasets could be utilized for making critical management decisions, but are often “messy” and difficult to interpret. Basic artificial intelligence algorithms (i.e., machine learning) are powerful tools that are shaping the world and must be taken advantage of in the life sciences. In ecology, machine learning algorithms are critical to helping resource managers synthesize information to better understand complex ecological systems. Machine Learning has a wide variety of powerful applications, with three general uses that are of particular interest to ecologists: (1) data exploration to gain system knowledge and generate new hypotheses, (2) predicting ecological patterns in sp
出版日期Book 2018
关键词Quantitative ecology; artificial intelligence; Statistics; data mining; machine learning; Wildlife biolog
版次1
doihttps://doi.org/10.1007/978-3-319-96978-7
isbn_ebook978-3-319-96978-7
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Machine Learning for Ecology and Sustainable Natural Resource Management影响因子(影响力)




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management影响因子(影响力)学科排名




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management网络公开度




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management网络公开度学科排名




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management被引频次




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management被引频次学科排名




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management年度引用




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management年度引用学科排名




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management读者反馈




书目名称Machine Learning for Ecology and Sustainable Natural Resource Management读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:25:11 | 显示全部楼层
发表于 2025-3-22 03:50:40 | 显示全部楼层
Grant R. W. Humphries,Falk Huettmannere Aufmerksamkeit gewidmet...Das Lexikon der Informatik ist für jeden, der sich in die Welt der Informatik begrifflich sicher und kompetent bewegen will, ein unverzichtbarer Begleiter...Der Schwerpunkt der Überarbeitung zur 14. Auflage lag auf dem Gebiet der Datensicherheit..978-3-540-72550-3
发表于 2025-3-22 06:40:54 | 显示全部楼层
发表于 2025-3-22 10:17:37 | 显示全部楼层
发表于 2025-3-22 15:38:56 | 显示全部楼层
发表于 2025-3-22 21:02:51 | 显示全部楼层
发表于 2025-3-22 23:37:40 | 显示全部楼层
From Data Mining with Machine Learning to Inference in Diverse and Highly Complex Data: Some Shared any contractors, governments, a lifestyle and subsequent belief system and society. However, the methodology employed in traditional statistical analyses are well-published and known to violate many of their required statistical assumptions to allow for valid inferences. Often, this topic becomes th
发表于 2025-3-23 03:41:19 | 显示全部楼层
发表于 2025-3-23 06:20:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表