找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Advanced Functional Materials; Nirav Joshi,Vinod Kushvaha,Priyanka Madhushri Book 2023 The Editor(s) (if applicable)

[复制链接]
楼主: informed
发表于 2025-3-26 23:41:54 | 显示全部楼层
Solar Cells and Relevant Machine Learning,nce and engineering including but not limited to solar cells. It helps us to optimize materials and their photovoltaic performance for various types of solar cells through algorithms and models, which is easy, cost-efficient, and rapid compared to conventional programming methods. Although the famil
发表于 2025-3-27 01:54:22 | 显示全部楼层
发表于 2025-3-27 06:44:53 | 显示全部楼层
A Machine Learning Approach in Wearable Technologies,tential applications in different fields, ranging from healthcare to smart agriculture. In this chapter, we provide an overview of the application of machine learning algorithms to wearable technologies. After introducing the algorithms more commonly used for analyzing data from wearable devices, we
发表于 2025-3-27 12:05:38 | 显示全部楼层
Potential of Machine Learning Algorithms in Material Science: Predictions in Design, Properties, ane and technology. Deep learning has attracted great interest from the research community of material science, because of its ability to statistically analyze a large collection of data. Along with the computational task, time efficient tools of machine learning have also been applied for the predict
发表于 2025-3-27 14:15:31 | 显示全部楼层
发表于 2025-3-27 20:51:56 | 显示全部楼层
Perovskite-Based Materials for Photovoltaic Applications: A Machine Learning Approach,ossil fuels, which emit enormous amounts of carbon dioxide and contribute significantly to global warming. Due to global concerns about the environment and the increasing demand for energy, technological advancement in renewable energy is opening up new possibilities for its use. Even today, solar e
发表于 2025-3-27 23:07:26 | 显示全部楼层
A Review of the High-Performance Gas Sensors Using Machine Learning, to ensure human safety in daily life and production. Machine-learning techniques have been used to successfully improve gas sensing performances of gas sensors leveraging large onsite data sets generated by them. A simple process is introduced to show the typical approach to collect the features fr
发表于 2025-3-28 04:46:09 | 显示全部楼层
发表于 2025-3-28 08:27:38 | 显示全部楼层
Contemplation of Photocatalysis Through Machine Learning, subfield of data science identified as the Machine Learning (ML). Utilization of ML could benefit the research community for various applications. Coupling of ML with a photocatalyst (PC) can accelerate the facile understanding of the relation between the structure-property-application-oriented rel
发表于 2025-3-28 10:30:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-30 10:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表