用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases: Research Track; European Conference, Danai Koutra,Claudia Plant,Francesco Bonchi Con

[复制链接]
查看: 11891|回复: 61
发表于 2025-3-21 19:28:13 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Discovery in Databases: Research Track
副标题European Conference,
编辑Danai Koutra,Claudia Plant,Francesco Bonchi
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Discovery in Databases: Research Track; European Conference, Danai Koutra,Claudia Plant,Francesco Bonchi Con
描述The multi-volume set LNAI 14169 until  14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023..The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. .The volumes are organized in topical sections as follows:.Part I:. Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality;   Clustering..Part II: .​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning..Part III: .​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning..Part IV:. ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning..Part V:. ​Robustness; Time Series; Transfer and Multitask Learning..Part VI:. ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Intera
出版日期Conference proceedings 2023
关键词artificial intelligence; computer hardware; computer networks; computer security; computer systems; compu
版次1
doihttps://doi.org/10.1007/978-3-031-43424-2
isbn_softcover978-3-031-43423-5
isbn_ebook978-3-031-43424-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning and Knowledge Discovery in Databases: Research Track影响因子(影响力)




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track网络公开度




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track网络公开度学科排名




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track被引频次




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track被引频次学科排名




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track年度引用




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track年度引用学科排名




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track读者反馈




书目名称Machine Learning and Knowledge Discovery in Databases: Research Track读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:41:23 | 显示全部楼层
发表于 2025-3-22 01:37:49 | 显示全部楼层
Exploring the Training Robustness of Distributional Reinforcement Learning Against Noisy State Obserimal actions or even collapse while training. In this paper, we study the training robustness of distributional Reinforcement Learning (RL), a class of state-of-the-art methods that estimate the whole distribution, as opposed to only the expectation, of the total return. Firstly, we validate the con
发表于 2025-3-22 06:57:30 | 显示全部楼层
发表于 2025-3-22 10:51:24 | 显示全部楼层
Label Shift Quantification with Robustness Guarantees via Distribution Feature Matchingframework, distribution feature matching (DFM), that recovers as particular instances various estimators introduced in previous literature. We derive a general performance bound for DFM procedures, improving in several key aspects upon previous bounds derived in particular cases. We then extend this
发表于 2025-3-22 16:13:47 | 显示全部楼层
发表于 2025-3-22 21:04:31 | 显示全部楼层
DualMatch: Robust Semi-supervised Learning with Dual-Level Interactiong methods typically match model predictions of different data-augmented views in a single-level interaction manner, which highly relies on the quality of pseudo-labels and results in semi-supervised learning not robust. In this paper, we propose a novel SSL method called DualMatch, in which the clas
发表于 2025-3-22 21:23:20 | 显示全部楼层
发表于 2025-3-23 02:15:33 | 显示全部楼层
Deep Imbalanced Time-Series Forecasting via Local Discrepancy Densitypite their scarce occurrences in the training set (., data imbalance), abrupt changes incur loss that significantly contributes to the total loss (., heteroscedasticity). Therefore, they act as noisy training samples and prevent the model from learning generalizable patterns, namely the normal state
发表于 2025-3-23 09:05:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 13:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表