找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indrė Žliobaitė Confer

[复制链接]
楼主: Nixon
发表于 2025-3-26 22:45:25 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/m/image/620545.jpg
发表于 2025-3-27 04:26:48 | 显示全部楼层
https://doi.org/10.1007/978-3-031-70344-7artificial intelligence; computer security; computer systems; computer vision; computational modelling; d
发表于 2025-3-27 08:01:29 | 显示全部楼层
0302-9743 k: .The 56 full papers presented here, from this track, were carefully reviewed and selected from 224 submissions. These papers are present in the following volumes: Part IX and Part X..978-3-031-70343-0978-3-031-70344-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-27 10:48:32 | 显示全部楼层
Landscape Analysis of Stochastic Policy Gradient Methodse population and the empirical objective. In particular, our findings are agnostic to the choice of the algorithm and hold for a wide range of gradient-based methods. Consequently, we are able to recover and improve numerous existing results through the vanilla policy gradient. To the best of our kn
发表于 2025-3-27 16:20:24 | 显示全部楼层
发表于 2025-3-27 19:56:29 | 显示全部楼层
Frequency Enhanced Pre-training for Cross-City Few-shot Traffic Forecastingime and frequency domain and trains it with self-supervised tasks encompassing reconstruction and contrastive objectives. In the fine-tuning stage, we design modules to enrich training samples and maintain a momentum-updated graph structure, thereby mitigating the risk of overfitting to the few-shot
发表于 2025-3-28 01:08:10 | 显示全部楼层
Simple Graph Condensationoduce the Simple Graph Condensation (SimGC) framework, which aligns the condensed graph with the original graph from the input layer to the prediction layer, guided by a pre-trained Simple Graph Convolution (SGC) model on the original graph. Importantly, SimGC eliminates external parameters and excl
发表于 2025-3-28 05:31:15 | 显示全部楼层
发表于 2025-3-28 06:42:01 | 显示全部楼层
发表于 2025-3-28 12:59:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 11:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表