找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indrė Žliobaitė Confer

[复制链接]
查看: 48573|回复: 60
发表于 2025-3-21 19:17:54 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Discovery in Databases. Research Track
副标题European Conference,
编辑Albert Bifet,Jesse Davis,Indrė Žliobaitė
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indrė Žliobaitė Confer
描述.This multi-volume set, LNAI 14941 to LNAI 14950, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2024, held in Vilnius, Lithuania, in September 2024... ..The papers presented in these proceedings are from the following three conference tracks: -..Research Track:. The 202 full papers presented here, from this track, were carefully reviewed and selected from 826 submissions. These papers are present in the following volumes: Part I, II, III, IV, V, VI, VII, VIII... ..Demo Track: .The 14 papers presented here, from this track, were selected from 30 submissions. These papers are present in the following volume: Part VIII... ..Applied Data Science Track: .The 56 full papers presented here, from this track, were carefully reviewed and selected from 224 submissions. These papers are present in the following volumes: Part IX and Part X..
出版日期Conference proceedings 2024
关键词artificial intelligence; computer hardware; computer networks; computer security; computer systems; compu
版次1
doihttps://doi.org/10.1007/978-3-031-70368-3
isbn_softcover978-3-031-70367-6
isbn_ebook978-3-031-70368-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning and Knowledge Discovery in Databases. Research Track影响因子(影响力)




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track网络公开度




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track网络公开度学科排名




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track被引频次




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track被引频次学科排名




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track年度引用




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track年度引用学科排名




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track读者反馈




书目名称Machine Learning and Knowledge Discovery in Databases. Research Track读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:55:35 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/m/image/620544.jpg
发表于 2025-3-22 02:44:18 | 显示全部楼层
发表于 2025-3-22 06:44:56 | 显示全部楼层
发表于 2025-3-22 11:36:00 | 显示全部楼层
Fast Redescription Mining Using Locality-Sensitive Hashing we present new algorithms that perform the matching and extension orders of magnitude faster than the existing approaches. Our algorithms are based on locality-sensitive hashing with a tailored approach to handle the discretisation of numerical attributes as used in redescription mining.
发表于 2025-3-22 16:31:46 | 显示全部楼层
发表于 2025-3-22 17:19:46 | 显示全部楼层
Conference proceedings 2024scovery in Databases, ECML PKDD 2024, held in Vilnius, Lithuania, in September 2024... ..The papers presented in these proceedings are from the following three conference tracks: -..Research Track:. The 202 full papers presented here, from this track, were carefully reviewed and selected from 826 su
发表于 2025-3-22 23:49:06 | 显示全部楼层
发表于 2025-3-23 02:47:54 | 显示全部楼层
Model-Based Reinforcement Learning with Multi-task Offline Pretrainingsferring the task-agnostic knowledge of physical dynamics to facilitate world model training, and (ii) learning to replay relevant source actions to guide the target policy. We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
发表于 2025-3-23 05:47:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 00:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表