找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indrė Žliobaitė Confer

[复制链接]
楼主: 恰当
发表于 2025-3-23 09:53:48 | 显示全部楼层
A Theoretically Grounded Extension of Universal Attacks from the Attacker’s Viewpointformance of state-of-the-art gradient-based universal perturbation. As evidenced by our experiments, these novel universal perturbations result in more interpretable, diverse, and transferable attacks.
发表于 2025-3-23 14:12:10 | 显示全部楼层
发表于 2025-3-23 20:57:09 | 显示全部楼层
发表于 2025-3-24 00:02:13 | 显示全部楼层
发表于 2025-3-24 05:36:19 | 显示全部楼层
Walking Noise: On Layer-Specific Robustness of Neural Architectures Against Noisy Computations and Aorkload. We propose a methodology called . which injects layer-specific noise to measure the robustness and to provide insights on the learning dynamics. In more detail, we investigate the implications of additive, multiplicative and mixed noise for different classification tasks and model architect
发表于 2025-3-24 09:19:24 | 显示全部楼层
KAFÈ: Kernel Aggregation for FEderatedel .ggregation for .derated Learning. KAFÈ leverages Kernel Density Estimation (KDE) to construct a novel classification layer for the global model, drawing upon the estimated weight distributions of the individual classifiers. We conducted several experiments on image and text datasets to evaluate
发表于 2025-3-24 12:28:08 | 显示全部楼层
发表于 2025-3-24 15:39:06 | 显示全部楼层
发表于 2025-3-24 20:39:33 | 显示全部楼层
Low-Hanging Fruit: Knowledge Distillation from Noisy Teachers for Open Domain Spoken Language Unders techniques to generate more reliable annotations for unlabelled OD-SLU data, thereby fostering “Consistently Guiding Students”. Initially, IPPS aims to solve the straightforward intent prediction task in OD-SLU using self-ranked prompting, enhancing LLMs precision using similar examples from a smal
发表于 2025-3-25 01:41:50 | 显示全部楼层
The Price of Labelling: A Two-Phase Federated Self-learning Approachsuch as class imbalance and distribution shift across clients. This poses a challenge for creating high-quality pseudo-labels without addressing data heterogeneity. To overcome these challenges, we propose a two-phase FL approach based on data augmentation and self-learning, coined 2PFL. In the firs
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 02:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表