找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Michele Berlingerio,Francesco Bonchi,Georgiana Ifr Conference p

[复制链接]
查看: 40652|回复: 55
发表于 2025-3-21 19:22:15 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Discovery in Databases
副标题European Conference,
编辑Michele Berlingerio,Francesco Bonchi,Georgiana Ifr
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Michele Berlingerio,Francesco Bonchi,Georgiana Ifr Conference p
描述The three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. . The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. .The contributions were organized in topical sections named as follows:. Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learningensemble methods; and evaluation.. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. . Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track..
出版日期Conference proceedings 2019
关键词artificial intelligence; bayesian networks; big data; classification; clustering; data mining; data securi
版次1
doihttps://doi.org/10.1007/978-3-030-10925-7
isbn_softcover978-3-030-10924-0
isbn_ebook978-3-030-10925-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)




书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度学科排名




书目名称Machine Learning and Knowledge Discovery in Databases被引频次




书目名称Machine Learning and Knowledge Discovery in Databases被引频次学科排名




书目名称Machine Learning and Knowledge Discovery in Databases年度引用




书目名称Machine Learning and Knowledge Discovery in Databases年度引用学科排名




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:58:14 | 显示全部楼层
Michele Berlingerio,Francesco Bonchi,Georgiana Ifr
发表于 2025-3-22 04:10:49 | 显示全部楼层
发表于 2025-3-22 07:40:20 | 显示全部楼层
发表于 2025-3-22 12:25:31 | 显示全部楼层
发表于 2025-3-22 14:16:50 | 显示全部楼层
Bryan Hooi,Dhivya Eswaran,Hyun Ah Song,Amritanshu Pandey,Marko Jereminov,Larry Pileggi,Christos Falo
发表于 2025-3-22 18:37:54 | 显示全部楼层
发表于 2025-3-22 22:24:00 | 显示全部楼层
: Sensor Placement and Anomaly Detection in the Electrical Gridt in our sensor placement algorithm. . Our sensor placement algorithm is provably near-optimal, and both our algorithms outperform existing approaches in accuracy by . or more (F-measure) in experiments. . our algorithms scale ., and our detection algorithm is ., requiring bounded space and constant
发表于 2025-3-23 02:08:05 | 显示全部楼层
发表于 2025-3-23 08:43:03 | 显示全部楼层
L1-Depth Revisited: A Robust Angle-Based Outlier Factor in High-Dimensional Spaceother proposed angle-based outlier factors on detecting high-dimensional outliers regarding both efficiency and accuracy..In order to avoid the quadratic computational time, we introduce a simple but efficient sampling method named . for estimating L1-depth measure. We also present theoretical analy
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 05:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表