找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Yasemin Altun,Kamalika Das,Sašo Džeroski Conference proceedings

[复制链接]
查看: 40543|回复: 56
发表于 2025-3-21 17:36:39 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Discovery in Databases
副标题European Conference,
编辑Yasemin Altun,Kamalika Das,Sašo Džeroski
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Yasemin Altun,Kamalika Das,Sašo Džeroski Conference proceedings
描述.The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. .The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. .The contributions were organized in topical sections named as follows:. Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning.. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning.. Part III: applied data science track; nectar track; and demo track..
出版日期Conference proceedings 2017
关键词anomaly detection; artificial intelligence; Bayesian networks; classification; clustering algorithms; dat
版次1
doihttps://doi.org/10.1007/978-3-319-71273-4
isbn_softcover978-3-319-71272-7
isbn_ebook978-3-319-71273-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)




书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度学科排名




书目名称Machine Learning and Knowledge Discovery in Databases被引频次




书目名称Machine Learning and Knowledge Discovery in Databases被引频次学科排名




书目名称Machine Learning and Knowledge Discovery in Databases年度引用




书目名称Machine Learning and Knowledge Discovery in Databases年度引用学科排名




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:00:12 | 显示全部楼层
Jianing Zhao,Daniel M. Runfola,Peter Kempergaben mit einem mittleren Schwierigkeitsgrad wählen. Versucht beispielsweise ein Jugendlicher sportliche Leistungen im Hochsprung zu erbringen, so kann er die Sprunglatte unterschiedlich hoch auflegen. Bei einem realistischen Anspruchsniveau wird er eine Höhe wählen, die ihm Anstrengung abverlangt,
发表于 2025-3-22 01:58:12 | 显示全部楼层
发表于 2025-3-22 05:27:50 | 显示全部楼层
发表于 2025-3-22 08:58:32 | 显示全部楼层
发表于 2025-3-22 16:00:01 | 显示全部楼层
Automatic Detection and Recognition of Individuals in Patterned Speciession (or Linear SVM) classifier to recognize the individuals. We primarily test and evaluate our framework on a camera trap tiger image dataset that contains images that vary in overall image quality, animal pose, scale and lighting. We also evaluate our recognition system on zebra and jaguar images
发表于 2025-3-22 19:05:52 | 显示全部楼层
发表于 2025-3-22 21:38:06 | 显示全部楼层
CREST - Risk Prediction for Clostridium Difficile Infection Using Multimodal Data Miningns these features into three sets: time-invariant, time-variant, and temporal synopsis features. CREST then learns classifiers for each set of features, evaluating their relative effectiveness. Lastly, CREST employs a second-order meta learning process to ensemble these classifiers for optimized est
发表于 2025-3-23 03:35:29 | 显示全部楼层
DC-Prophet: Predicting Catastrophic Machine Failures in ,ata,entersF.-score (The ideal value of F.-score is 1, indicating perfect predictions. Also, the intuition behind F.-score is to value “Recall” about three times more than “Precision” [.].) of 0.88 (out of 1). On average, DC-Prophet outperforms other classical machine learning methods by 39.45% in F.-score.
发表于 2025-3-23 08:53:23 | 显示全部楼层
Event Detection and Summarization Using Phrase Networkas a clustering of high-frequency phrases extracted from text. All trending topics are then identified based on temporal spikes of the phrase cluster frequencies. PhraseNet thus filters out high-confidence events from other trending topics using number of peaks and variance of peak intensity. We eva
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 12:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表