找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Deep Learning in Computational Toxicology; Huixiao Hong Book 2023 This is a U.S. government work and not under copyri

[复制链接]
楼主: 适婚女孩
发表于 2025-3-25 03:57:59 | 显示全部楼层
Quantitative Target-specific Toxicity Prediction Modeling (QTTPM): Coupling Machine Learning with Dys employed to develop QTTPM models using dyPLIDs. Results indicate that dyPLID-based models outperformed those developed using conventional descriptors in predicting holdout test datasets. The QTTPM identified key dyPLIDs providing insights on ligand-induced protein structural changes that are impor
发表于 2025-3-25 11:28:12 | 显示全部楼层
Controlling for Confounding in Complex Survey Machine Learning Models to Assess Drug Safety and Riskpling weights. A viable approach for controlling confounding in complex observational surveys could open a new frontier for machine learning models and analysis in toxicological and medication studies with NHANES and other complex survey data.
发表于 2025-3-25 14:55:08 | 显示全部楼层
Multivariate Curve Resolution for Analysis of Heterogeneous System in Toxicogenomicsivariate curve resolution (MCR) model transfers a mixed system into a bilinear model of pure component contributions, which can be useful in untangling heterogeneous systems such as TGx. In this chapter, the main goal of applying MCR to TGx is to reduce the effect of heterogeneous data on the expres
发表于 2025-3-25 17:21:36 | 显示全部楼层
Book 2023gy. This book is expected to provide a reference for practical applications of machine learning anddeep learning in toxicological research. It is a useful guide for toxicologists, chemists, drug discovery and development researchers, regulatory scientists, government reviewers, and graduate students
发表于 2025-3-25 21:52:20 | 显示全部楼层
发表于 2025-3-26 00:33:12 | 显示全部楼层
Dmitry Filimonov,Alexander Dmitriev,Anastassia Rudik,Vladimir Poroikov
发表于 2025-3-26 07:44:20 | 显示全部楼层
发表于 2025-3-26 11:59:19 | 显示全部楼层
发表于 2025-3-26 13:50:39 | 显示全部楼层
发表于 2025-3-26 20:36:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 04:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表