找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Cybernetics; 13th International C Xizhao Wang,Witold Pedrycz,Qiang He Conference proceedings 2014 Springer-Verlag Berl

[复制链接]
楼主: Odious
发表于 2025-3-23 12:09:33 | 显示全部楼层
Combining Classifiers Based on Gaussian Mixture Model Approach to Ensemble Datag. In this paper, we focus on combining different classifiers to form an effective ensemble system. By introducing a novel framework operated on outputs of different classifiers, our aim is to build a powerful model which is competitive to other well-known combining algorithms such as Decision Templ
发表于 2025-3-23 16:22:34 | 显示全部楼层
Sentiment Classification of Chinese Reviews in Different Domain: A Comparative Studyws mining plays an important role in the application of product information or public opinion monitoring. Sentiment classification of users’ reviews is one of key issues in the review mining. Comparative study on sentiment classification results of reviews in different domains and the adaptability o
发表于 2025-3-23 20:37:37 | 显示全部楼层
发表于 2025-3-23 23:04:29 | 显示全部楼层
发表于 2025-3-24 04:22:32 | 显示全部楼层
Classification Based on Lower Integral and Extreme Learning Machinential interaction of a group of attributes. The lower integral is a type of non-linear integral with respect to non-additive set functions, which represents the minimum potential of efficiency for a group of attributes with interaction. Through solving a linear programming problem, the value of lowe
发表于 2025-3-24 08:10:21 | 显示全部楼层
发表于 2025-3-24 11:54:55 | 显示全部楼层
发表于 2025-3-24 15:29:27 | 显示全部楼层
Comparative Analysis of Density Estimation Based Kernel Regressiontation of a random variable and the non-linear mapping from input to output. There are three commonly used LLKEs, i.e., the Nadaraya-Watson kernel estimator, the Priestley-Chao kernel estimator and the Gasser-Müller kernel estimator. Existing studies show that the performance of LLKE mainly depends
发表于 2025-3-24 20:56:14 | 显示全部楼层
发表于 2025-3-25 01:37:24 | 显示全部楼层
Bandwidth Selection for Nadaraya-Watson Kernel Estimator Using Cross-Validation Based on Different P generalized cross-validation (.), the Shibata’s model selector (.), the Akaike’s information criterion (.) and the Akaike’s finite prediction error (.)) are introduced to relieve the problem of selecting over-smoothing bandwidth parameter by the traditional cross-validation for kernel regression pr
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 02:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表