找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning Paradigms; Advances in Learning Maria Virvou,Efthimios Alepis,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020

[复制链接]
查看: 35284|回复: 51
发表于 2025-3-21 17:11:46 | 显示全部楼层 |阅读模式
书目名称Machine Learning Paradigms
副标题Advances in Learning
编辑Maria Virvou,Efthimios Alepis,Lakhmi C. Jain
视频video
概述Presents recent machine learning paradigms and advances in learning analytics.Provides concise coverage from the vantage point of a newcomer, but will also appeal to experts/researchers in learning an
丛书名称Intelligent Systems Reference Library
图书封面Titlebook: Machine Learning Paradigms; Advances in Learning Maria Virvou,Efthimios Alepis,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020
描述.This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including:.• Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation;.• Using learning analytics to predict student performance;.• Using learning analytics to create learning materials and educational courses; and.• Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning.. .The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest..
出版日期Book 2020
关键词Learning Analytics; Mobile Learning; Educational Tools; Social Network Learning; Big Learning Data; Analy
版次1
doihttps://doi.org/10.1007/978-3-030-13743-4
isbn_ebook978-3-030-13743-4Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Machine Learning Paradigms影响因子(影响力)




书目名称Machine Learning Paradigms影响因子(影响力)学科排名




书目名称Machine Learning Paradigms网络公开度




书目名称Machine Learning Paradigms网络公开度学科排名




书目名称Machine Learning Paradigms被引频次




书目名称Machine Learning Paradigms被引频次学科排名




书目名称Machine Learning Paradigms年度引用




书目名称Machine Learning Paradigms年度引用学科排名




书目名称Machine Learning Paradigms读者反馈




书目名称Machine Learning Paradigms读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:50:50 | 显示全部楼层
发表于 2025-3-22 02:03:08 | 显示全部楼层
Jede Hauptgruppe basiert auf spezifischen Merkmalen. Im Falle einer Änderung der Form wird der Stoffzusammenhalt beibehalten, vermindert oder vermehrt (vgl. Tab. 7.1). .Die in folgenden Abschnitten beschriebenen Fertigungsverfahren finden sich zum Beispiel in den Hauptgruppen.beziehungsweise.Andere
发表于 2025-3-22 07:42:47 | 显示全部楼层
发表于 2025-3-22 11:57:47 | 显示全部楼层
David Martín Santos Melgozan des konstruktiven Leichtbaus im Fahrzeug- und Maschinenbau. Dabei wurde besonderer Wert auf eine praxisorientierte Darstellung gelegt, um der Ingenieurausbildung an Hochschulen passgenau gerecht zu werden. Es führt methodisch in die Arbeitstechniken und konstruktiven Fragestellungen ein. Ziel des
发表于 2025-3-22 16:27:19 | 显示全部楼层
Machine Learning Paradigms,ment of more engaging and human-like computer-based learning, personalization and incorporation of artificial intelligence techniques. A new research discipline, termed ., is emerging and examines the collection and intelligent analysis of learner and instructor data with the goal to extract informa
发表于 2025-3-22 17:03:00 | 显示全部楼层
Using a Multi Module Model for Learning Analytics to Predict Learners’ Cognitive States and Provide m learning analytics in order to support the digital education. The way learning analytics is used, can vary. It can be used to provide learners with information to reflect on their achievements and patterns of behavior in relation to others, or to identify students requiring extra support and atten
发表于 2025-3-22 21:51:58 | 显示全部楼层
Analytics for Student Engagement studies. This significantly elevates opportunities to better understand how students learn. The learning analytics community is exploring these data to describe learning processes [.] and ground recommendations for improved learning environments [., ., .]. One challenge in this work is need for mor
发表于 2025-3-23 04:31:54 | 显示全部楼层
发表于 2025-3-23 05:35:34 | 显示全部楼层
Learning Feedback Based on Dispositional Learning Analyticsd on self-report surveys, offers a very rich context for learning analytics applications. In previous research, we have demonstrated how such Dispositional Learning Analytics applications not only have great potential regarding predictive power, e.g. with the aim to promptly signal students at risk,
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 08:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表