找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning Meets Quantum Physics; Kristof T. Schütt,Stefan Chmiela,Klaus-Robert Müll Book 2020 The Editor(s) (if applicable) and The

[复制链接]
楼主: Inveigle
发表于 2025-3-25 03:49:56 | 显示全部楼层
发表于 2025-3-25 08:58:03 | 显示全部楼层
Alexander Shapeev,Konstantin Gubaev,Evgenii Tsymbalov,Evgeny Podryabinkin stellt die Qualifizierung zum Dozent im Rettungsdienst dar, der vorwiegend an Rettungsdienstschulen tätig ist. Auch für diese Personengruppe ist das Werk hervorragend geeignet..978-3-642-34939-3978-3-642-34940-9
发表于 2025-3-25 11:40:18 | 显示全部楼层
发表于 2025-3-25 17:40:31 | 显示全部楼层
发表于 2025-3-25 21:36:30 | 显示全部楼层
发表于 2025-3-26 01:43:39 | 显示全部楼层
Introduction to Neural Networksresent practical steps that ease training of neural networks, and then review simple approaches to introduce prior knowledge into the model. The discussion is supported by theoretical arguments as well as examples showing how well-performing neural networks can be implemented easily in modern neural network frameworks.
发表于 2025-3-26 07:00:01 | 显示全部楼层
Message Passing Neural Networksph data fit into this framework. This chapter contains large overlap with Gilmer et al. (International Conference on Machine Learning, pp. 1263–1272, 2017), and has been modified to highlight more recent extensions to the MPNN framework.
发表于 2025-3-26 12:22:04 | 显示全部楼层
High-Dimensional Neural Network Potentials for Atomistic Simulationspotential energy surface exactly, are used as descriptors for the atomic environments. This chapter describes how such symmetry functions and high-dimensional neural network potentials are constructed and validated.
发表于 2025-3-26 13:42:31 | 显示全部楼层
Book 2020 both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-
发表于 2025-3-26 20:11:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-29 04:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表