用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning For Network Traffic and Video Quality Analysis; Develop and Deploy A Tulsi Pawan Fowdur,Lavesh Babooram Book 2024 Tulsi Pa

[复制链接]
查看: 9524|回复: 36
发表于 2025-3-21 19:20:21 | 显示全部楼层 |阅读模式
书目名称Machine Learning For Network Traffic and Video Quality Analysis
副标题Develop and Deploy A
编辑Tulsi Pawan Fowdur,Lavesh Babooram
视频video
概述Shows how to assess the performance of NTMA and VQA algorithms.Covers the latest advances in machine learning algorithms for NTMA and VQA.Explains all processes and system models using intuitive diagr
图书封面Titlebook: Machine Learning For Network Traffic and Video Quality Analysis; Develop and Deploy A Tulsi Pawan Fowdur,Lavesh Babooram Book 2024 Tulsi Pa
描述.This book offers both theoretical insights and hands-on experience in understanding and building machine learning-based Network Traffic Monitoring and Analysis (NTMA) and Video Quality Assessment (VQA) applications using JavaScript. JavaScript provides the flexibility to deploy these applications across various devices and web browsers... ..The book begins by delving into NTMA, explaining fundamental concepts and providing an overview of existing applications and research within this domain. It also goes into the essentials of VQA and offers a survey of the latest developments in VQA algorithms. The book includes a thorough examination of machine learning algorithms that find application in both NTMA and VQA, with a specific emphasis on classification and prediction algorithms such as the Multi-Layer Perceptron and Support Vector Machine. The book also explores the software architecture of the NTMA client-server application. This architecture is meticulously developed using HTML, CSS, Node.js, and JavaScript. Practical aspects of developing the Video Quality Assessment (VQA) model using JavaScript and Java are presented. Lastly, the book provides detailed guidance on implementing
出版日期Book 2024
关键词Network Traffic Analysis; Video Quality; Machine Learning; JavaScript; Deep Learning; Artificial intellig
版次1
doihttps://doi.org/10.1007/979-8-8688-0354-3
isbn_softcover979-8-8688-0353-6
isbn_ebook979-8-8688-0354-3
copyrightTulsi Pawan Fowdur, Lavesh Babooram 2024
The information of publication is updating

书目名称Machine Learning For Network Traffic and Video Quality Analysis影响因子(影响力)




书目名称Machine Learning For Network Traffic and Video Quality Analysis影响因子(影响力)学科排名




书目名称Machine Learning For Network Traffic and Video Quality Analysis网络公开度




书目名称Machine Learning For Network Traffic and Video Quality Analysis网络公开度学科排名




书目名称Machine Learning For Network Traffic and Video Quality Analysis被引频次




书目名称Machine Learning For Network Traffic and Video Quality Analysis被引频次学科排名




书目名称Machine Learning For Network Traffic and Video Quality Analysis年度引用




书目名称Machine Learning For Network Traffic and Video Quality Analysis年度引用学科排名




书目名称Machine Learning For Network Traffic and Video Quality Analysis读者反馈




书目名称Machine Learning For Network Traffic and Video Quality Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:53:24 | 显示全部楼层
Tulsi Pawan Fowdur,Lavesh Babooramt. In einem zweiten Schritt erfolgt die Darstellung der fünf identifizierten Kooperationsmodelle, die das zentrale Element der Untersuchung sind. Die Modelle werden einzeln dargestellt, um die jeweiligen Kooperationsformen klar voneinander abzugrenzen. Diesen Modellen entsprechend wird in einem drit
发表于 2025-3-22 02:33:44 | 显示全部楼层
Tulsi Pawan Fowdur,Lavesh BabooramLehrerkooperation eingegangen, die in dieser Arbeit als abhängige Variable fungiert. In Kapitel 4.1 wird zunächst der Begriff der Kooperation von ähnlichen Konstrukten wie der Kollegialität, der sozialen Unterstützung, der Kommunikation und der Koordination abgegrenzt. Daran anschließend werden in d
发表于 2025-3-22 08:10:50 | 显示全部楼层
发表于 2025-3-22 11:33:48 | 显示全部楼层
发表于 2025-3-22 15:10:54 | 显示全部楼层
发表于 2025-3-22 18:20:01 | 显示全部楼层
Network Traffic Monitoring and Analysis,ghlighting the crucial part it plays in evaluating network activity and performance. Coupled with the massive influx of users onto our networks, activities such as web browsing and video streaming have gained increasing popularity, further necessitating measures and standards for maintaining the qua
发表于 2025-3-22 22:29:30 | 显示全部楼层
Video Quality Assessment,ets and highlights of VQA are elaborated with regard to maintaining a seamless multimedia experience. The breakdown includes a deep dive into the different artifacts that the algorithm uses, such as ringing, blocking, and noising. With the technique used being a no-reference (NR) metric, a mean opin
发表于 2025-3-23 03:13:43 | 显示全部楼层
Machine Learning Techniques for NTMA and VQA,y assessment (VQA). Through passive listening of network parameters’ being reported by the network interface, the Node.js server formulates a series of arrays that keep track of network traffic collected over time. The same applies to ML-derived mean opinion score (MOS) values through video streamin
发表于 2025-3-23 08:23:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 04:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表