找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization; Dhish Kumar Saxena,Sukrit Mittal,Erik D. Goodman Book 2024

[复制链接]
查看: 11694|回复: 45
发表于 2025-3-21 17:55:29 | 显示全部楼层 |阅读模式
书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization
编辑Dhish Kumar Saxena,Sukrit Mittal,Erik D. Goodman
视频video
概述Dedicated to machine learning based performance enhancements in evolutionary multi- and many objective optimization.Discusses the topics in a clear and structured manner, covering the search, post-opt
丛书名称Genetic and Evolutionary Computation
图书封面Titlebook: Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization;  Dhish Kumar Saxena,Sukrit Mittal,Erik D. Goodman Book 2024
描述This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits. .Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed
出版日期Book 2024
关键词Evolutionary Multi-objective Optimization; Machine Learning; Evolutionary Computation; Convergence; Dive
版次1
doihttps://doi.org/10.1007/978-981-99-2096-9
isbn_softcover978-981-99-2098-3
isbn_ebook978-981-99-2096-9Series ISSN 1932-0167 Series E-ISSN 1932-0175
issn_series 1932-0167
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization影响因子(影响力)




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization影响因子(影响力)学科排名




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization网络公开度




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization网络公开度学科排名




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization被引频次




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization被引频次学科排名




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization年度引用




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization年度引用学科排名




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization读者反馈




书目名称Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:12:30 | 显示全部楼层
Investigating Innovized Progress Operators with Different ML Methods,used in these operators was not discussed. However, to endorse the robustness of the proposed (IP2, IP3, and UIP) operators, it is imperative to investigate how significantly their performance can be influenced when the underlying ML methods are varied.
发表于 2025-3-22 00:54:11 | 显示全部楼层
,Learning to Analyze the Pareto-Optimal Front, vectors in the .-approximation (. in .), and their underlying variable vectors (. in .). Subsequently, the trained ML model is applied to predict the solution’s . vector for any desired pseudo-weight vector. In other words, the trained ML model is used to create new non-dominated solutions in any d
发表于 2025-3-22 07:53:02 | 显示全部楼层
Book 2024converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed
发表于 2025-3-22 11:08:22 | 显示全部楼层
tutionen in der Konstitution von Differenzordnungen spielen. Der Band leistet dadurch einen wertvollen Beitrag zur (empirischen) erziehungswissenschaftlichen Differenzforschung.978-3-658-37327-6978-3-658-37328-3Series ISSN 2524-8731 Series E-ISSN 2524-874X
发表于 2025-3-22 13:57:34 | 显示全部楼层
发表于 2025-3-22 17:39:29 | 显示全部楼层
发表于 2025-3-23 00:51:17 | 显示全部楼层
发表于 2025-3-23 04:55:04 | 显示全部楼层
Dhish Kumar Saxena,Sukrit Mittal,Kalyanmoy Deb,Erik D. Goodmanelle Strukturen hermachen. In ihnen finden sie nicht nur einen Gegenstand, den man über gesetz­ gebende Parlamentsbeschlüsse vergleichsweise leicht verändern könnte; sie kapri­ zieren sich zugleich auf einen Aspekt des (Aus-)Bildtingsgeschehens, der ihnen intellektuell mit eher bescheidenem Aufwand bewältigba978-3-8100-3055-9978-3-663-10645-6
发表于 2025-3-23 07:33:28 | 显示全部楼层
Dhish Kumar Saxena,Sukrit Mittal,Kalyanmoy Deb,Erik D. Goodmanund tätigkeitsbezogene Formen der Vermittlung in den Blick. Aus einer didaktischen Perspektive entsteht damit die Frage nach einer angemessenen Ausrichtung der kaufmännischen Aus- und Weiterbildung. Aus der hier bezogenen Position bedeutet das, für die Berufsschule eine Ortsbestimmung aufzubauen, zu
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 19:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表