找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning Approaches to Non-Intrusive Load Monitoring; Roberto Bonfigli,Stefano Squartini Book 2020 The Author(s), under exclusive

[复制链接]
查看: 30457|回复: 37
发表于 2025-3-21 17:07:53 | 显示全部楼层 |阅读模式
书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring
编辑Roberto Bonfigli,Stefano Squartini
视频video
丛书名称SpringerBriefs in Energy
图书封面Titlebook: Machine Learning Approaches to Non-Intrusive Load Monitoring;  Roberto Bonfigli,Stefano Squartini Book 2020 The Author(s), under exclusive
描述Research on Smart Grids has recently focused on the energy monitoring issue, with the objective of maximizing the user consumption awareness in building contexts on the one hand, and providing utilities with a detailed description of customer habits on the other. In particular, .Non-Intrusive Load Monitoring (NILM)., the subject of this book, .represents one of the hottest topics in Smart Grid applications.. NILM refers to those techniques aimed at decomposing the consumption-aggregated data acquired at a single point of measurement into the diverse consumption profiles of appliances operating in the electrical system under study. .This book provides a status report on the most promising NILM methods, with an overview of the publically available dataset on which the algorithm and experiments are based. Of the proposed methods, those based on the Hidden Markov Model (HMM) and the Deep Neural Network (DNN) are the best performing and most interesting from the future improvement point of view.. One method from each category has been selected and the performance improvements achieved are described. Comparisons are made between the two reference techniques, and pros and cons are conside
出版日期Book 2020
关键词Smart Grid; Non-Intrusive Load Monitoring (NILM); Deep Neural Network (DNN); Factorial Hidden Markov Mo
版次1
doihttps://doi.org/10.1007/978-3-030-30782-0
isbn_softcover978-3-030-30781-3
isbn_ebook978-3-030-30782-0Series ISSN 2191-5520 Series E-ISSN 2191-5539
issn_series 2191-5520
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring影响因子(影响力)




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring影响因子(影响力)学科排名




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring网络公开度




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring网络公开度学科排名




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring被引频次




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring被引频次学科排名




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring年度引用




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring年度引用学科排名




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring读者反馈




书目名称Machine Learning Approaches to Non-Intrusive Load Monitoring读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:51:12 | 显示全部楼层
发表于 2025-3-22 01:28:01 | 显示全部楼层
发表于 2025-3-22 06:31:05 | 显示全部楼层
Roberto Bonfigli,Stefano Squartiniinnen konfrontiert, den die Planerinnen selbst hervorgerufen hatten. In ihren Augen war die ifu ein Vorgriff auf eine allgemeine Hochschulreform und in dieser Hinsicht als Pionierleistung für „eine andere Universität“ zu sehen. Von den vielfältigen Zielen wurde der Hochschulreformcharakter, die Abse
发表于 2025-3-22 10:28:20 | 显示全部楼层
发表于 2025-3-22 13:08:36 | 显示全部楼层
发表于 2025-3-22 20:00:40 | 显示全部楼层
Roberto Bonfigli,Stefano Squartinichungsergebnisse zum Diskurs um Lernen und Lehren in DiffereLehren und Lernen findet innerhalb gesellschaftlicher Verhältnisse statt, die von Differenzordnungen geprägt sind und oft unter den Labels Diversity, Heterogenität und Inklusion diskutiert werden. Die entlang von Markierungen wie etwa .race
发表于 2025-3-22 23:59:07 | 显示全部楼层
发表于 2025-3-23 05:15:16 | 显示全部楼层
发表于 2025-3-23 09:32:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 05:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表