找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Intelligence, Tools, and Applications; Proceedings of the I Satchidananda Dehuri,Sung-Bae Cho,Ashish Ghosh Conference proceedings 2

[复制链接]
楼主: ABS
发表于 2025-3-28 17:43:00 | 显示全部楼层
发表于 2025-3-28 19:48:17 | 显示全部楼层
发表于 2025-3-29 02:10:30 | 显示全部楼层
Software Maintenance Prediction Using Regression Models, the perofemance of the regression models, Elastic Net Regression and Lasso Regression are perofrmed better tahn otehr models. The Elastic Net and Lasso Regression models achieved RSMSE values are 400.87, 146.86, 80.17,168.79, 272.46 withrespetive datsets.
发表于 2025-3-29 06:38:38 | 显示全部楼层
Rough Set, ELM Classifier and Deep Architecture for Remote Sensing Images,tional requirements without compromising model performance. The designed model is evaluated on two data sets i.e., UC Merced and RSSCN7. The model’s superior classification performance is compared with Support Vector Machine (SVM) and similar methods on the ground of overall accuracy, precision, F1 score etc. measures.
发表于 2025-3-29 07:59:26 | 显示全部楼层
Machine Learning-Based Analysis and Forecasting of Electricity Demand in Misamis Occidental, Philipls to significantly improve energy management in smaller urban areas, addressing the need for accurate and reliable electricity demand forecasting. ARIMA, Machine Learning, Electricity Demand Forecasting, Energy Management, Sustainability, Misamis Occidental.
发表于 2025-3-29 12:19:44 | 显示全部楼层
发表于 2025-3-29 18:32:02 | 显示全部楼层
发表于 2025-3-29 23:21:04 | 显示全部楼层
发表于 2025-3-30 00:35:48 | 显示全部楼层
发表于 2025-3-30 06:03:57 | 显示全部楼层
Design of an Efficient Model for Satellite Image Classification Using Graph Neural Networks and Elework extends to land cover monitoring, environmental conservation, urban planning, and disaster management. The fusion of Graph Neural Networks and Elephant Herding Optimization highlights the potential of innovative deep learning techniques in remote sensing and geospatial analysis, aiding in a more sustainable decision-making process.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 23:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表