找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Low-Rank Approximation; Algorithms, Implemen Ivan Markovsky Book 2019Latest edition Springer International Publishing AG, part of Springer

[复制链接]
查看: 14835|回复: 42
发表于 2025-3-21 19:00:53 | 显示全部楼层 |阅读模式
书目名称Low-Rank Approximation
副标题Algorithms, Implemen
编辑Ivan Markovsky
视频video
概述Provides the reader with an analysis tool which is more generally applicable than the commonly-used total least squares.Shows the reader solutions to the problem of data modelling by linear systems fr
丛书名称Communications and Control Engineering
图书封面Titlebook: Low-Rank Approximation; Algorithms, Implemen Ivan Markovsky Book 2019Latest edition Springer International Publishing AG, part of Springer
描述This book is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory with a range of applications from systems and control theory to psychometrics being described. Special knowledge of the application fields is not required..The second edition of /Low-Rank Approximation/ is a thoroughly edited and extensively rewritten revision. It contains new chapters and sections that introduce the topics of:.• variable projection for structured low-rank approximation;.• missing data estimation;.• data-driven filtering and control;.• stochastic model representation and identification;.• identification of polynomial time-invariant systems; and.• blind identification with deterministic input model..The book is complemented by a software implementation of the methods presented, which makes the theory directly applicable in practice. In particular, all numerical examples in the book are included in demonstration files and can be reproduced by t
出版日期Book 2019Latest edition
关键词Data Approximation; Linear Algebra; Linear Models; Low-complexity Model; Numerical Algorithms; System Ide
版次2
doihttps://doi.org/10.1007/978-3-319-89620-5
isbn_softcover978-3-030-07817-1
isbn_ebook978-3-319-89620-5Series ISSN 0178-5354 Series E-ISSN 2197-7119
issn_series 0178-5354
copyrightSpringer International Publishing AG, part of Springer Nature 2019
The information of publication is updating

书目名称Low-Rank Approximation影响因子(影响力)




书目名称Low-Rank Approximation影响因子(影响力)学科排名




书目名称Low-Rank Approximation网络公开度




书目名称Low-Rank Approximation网络公开度学科排名




书目名称Low-Rank Approximation被引频次




书目名称Low-Rank Approximation被引频次学科排名




书目名称Low-Rank Approximation年度引用




书目名称Low-Rank Approximation年度引用学科排名




书目名称Low-Rank Approximation读者反馈




书目名称Low-Rank Approximation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:14:54 | 显示全部楼层
0178-5354 utions to the problem of data modelling by linear systems frThis book is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured
发表于 2025-3-22 02:06:14 | 显示全部楼层
发表于 2025-3-22 07:37:02 | 显示全部楼层
Introduction,rank. The chapter proceeds with review of applications in systems and control, signal processing, computer algebra, chemometrics, psychometrics, machine learning, and computer vision that lead to low-rank approximation problems. Finally, classes of generic solution methods for solving low-rank appro
发表于 2025-3-22 10:29:24 | 显示全部楼层
From Data to Modelsodel. Important questions considered are: “How to represent a model by equations?” and “How to convert one representation into another one?” When two models fit the data equally well, we prefer the simpler model. For this purpose, we define the notion of model complexity. Two principles—misfit and l
发表于 2025-3-22 13:34:05 | 显示全部楼层
Exact Modeling of ARMAX identification splits into three subproblems: (1) identification of the deterministic part, (2) identification of the AR-part, and (3) identification of the MA-part. Subproblems 1 and 2 are equivalent to deterministic identification problem. The last topic considered in the chapter is comp
发表于 2025-3-22 17:20:46 | 显示全部楼层
发表于 2025-3-22 22:31:42 | 显示全部楼层
发表于 2025-3-23 02:33:18 | 显示全部楼层
发表于 2025-3-23 06:14:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 14:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表