找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Low Resource Social Media Text Mining; Shriphani Palakodety,Ashiqur R. KhudaBukhsh,Guha J Book 2021 The Author(s), under exclusive license

[复制链接]
楼主: peak-flow-meter
发表于 2025-3-26 21:05:06 | 显示全部楼层
The Problem Setting, This chapter will help NLP practitioners understand the importance of analyzing the low-resource components of corpora from various societies and how ignoring them can skew results, how to go about addressing these, and a broad set of examples and statistics to reinforce the importance of low-resource social media text mining.
发表于 2025-3-27 02:53:33 | 显示全部楼层
Semantic Sampling,discussed allow task-specific data sets and models to be constructed rapidly often using just a handful of initial samples. We then explore extensions to sample across languages—allowing powerful pipelines that can transfer resources from well-resourced languages to their low-resource counterparts.
发表于 2025-3-27 09:14:54 | 显示全部楼层
A Rapid Tour of NLP,309 (2017) [.]) which provide a thorough and rigorous grounding of NLP. We discuss static and contextual word and document embeddings, and their applications. We then look at polyglot training in static and contextual embeddings.
发表于 2025-3-27 10:53:05 | 显示全部楼层
发表于 2025-3-27 15:20:00 | 显示全部楼层
发表于 2025-3-27 20:25:06 | 显示全部楼层
发表于 2025-3-27 22:15:59 | 显示全部楼层
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 15:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表