用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Low Resource Social Media Text Mining; Shriphani Palakodety,Ashiqur R. KhudaBukhsh,Guha J Book 2021 The Author(s), under exclusive license

[复制链接]
查看: 32666|回复: 36
发表于 2025-3-21 17:27:31 | 显示全部楼层 |阅读模式
书目名称Low Resource Social Media Text Mining
编辑Shriphani Palakodety,Ashiqur R. KhudaBukhsh,Guha J
视频videohttp://file.papertrans.cn/589/588810/588810.mp4
概述Introduces the various challenges associated with social media content and quantifies these issues.Features methods that are unsupervised or require minimal supervision.Is designed for NLP practitione
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Low Resource Social Media Text Mining;  Shriphani Palakodety,Ashiqur R. KhudaBukhsh,Guha J Book 2021 The Author(s), under exclusive license
描述.This book focuses on methods that are unsupervised or require minimal supervision—vital in the low-resource domain. Over the past few years, rapid growth in Internet access across the globe has resulted in an explosion in user-generated text content in social media platforms. This effect is significantly pronounced in linguistically diverse areas of the world like South Asia, where over 400 million people regularly access social media platforms. YouTube, Facebook, and Twitter report a monthly active user base in excess of 200 million from this region. Natural language processing (NLP) research and publicly available resources such as models and corpora prioritize Web content authored primarily by a Western user base. Such content is authored in English by a user base fluent in the language and can be processed by a broad range of off-the-shelf NLP tools. In contrast, text from linguistically diverse regions features high levels of multilinguality, code-switching, and varied languageskill levels. Resources like corpora and models are also scarce. Due to these factors, newer methods are needed to process such text...This book is designed for NLP practitioners well versed in recent a
出版日期Book 2021
关键词Natural Language Processing; Machine Learning; Text Mining; Social Media; Data Mining
版次1
doihttps://doi.org/10.1007/978-981-16-5625-5
isbn_softcover978-981-16-5624-8
isbn_ebook978-981-16-5625-5Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
The information of publication is updating

书目名称Low Resource Social Media Text Mining影响因子(影响力)




书目名称Low Resource Social Media Text Mining影响因子(影响力)学科排名




书目名称Low Resource Social Media Text Mining网络公开度




书目名称Low Resource Social Media Text Mining网络公开度学科排名




书目名称Low Resource Social Media Text Mining被引频次




书目名称Low Resource Social Media Text Mining被引频次学科排名




书目名称Low Resource Social Media Text Mining年度引用




书目名称Low Resource Social Media Text Mining年度引用学科排名




书目名称Low Resource Social Media Text Mining读者反馈




书目名称Low Resource Social Media Text Mining读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:02:50 | 显示全部楼层
发表于 2025-3-22 00:57:57 | 显示全部楼层
Language Identification,rmulations of the language identification task, briefly discuss supervised solutions, and then present low-supervision methods based on polyglot training that are highly applicable in low-resource settings. We then discuss code mixing, a linguistic phenomenon common in bilingual and multilingual spe
发表于 2025-3-22 07:31:36 | 显示全部楼层
Low Resource Machine Translation,pora. We discuss popular methods, and applications to low-resource settings. We further investigate the application of polyglot training to this field and present new promising directions for unsupervised machine translation.
发表于 2025-3-22 12:44:30 | 显示全部楼层
发表于 2025-3-22 13:14:46 | 显示全部楼层
发表于 2025-3-22 18:10:31 | 显示全部楼层
发表于 2025-3-22 22:47:19 | 显示全部楼层
发表于 2025-3-23 02:32:57 | 显示全部楼层
发表于 2025-3-23 07:00:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-11 15:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表