找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials—3; Volume 3 K.-T. Rie,H. W. Grünling,T. Seeger Book 1992 Elsevier Science Publi

[复制链接]
楼主: 有判断力
发表于 2025-3-25 04:31:37 | 显示全部楼层
发表于 2025-3-25 11:07:53 | 显示全部楼层
Cyclic Deformation and Low-Cycle Failure of Graphitese strength, some other specific properties. The problem of graphite structural members design stimulated wide experimental investigations to study deformation behavior and strength of these materials. On this foundation many attempts were made by a number of authors (see, for example, [1]) to formul
发表于 2025-3-25 11:51:35 | 显示全部楼层
发表于 2025-3-25 16:24:28 | 显示全部楼层
发表于 2025-3-25 23:00:22 | 显示全部楼层
发表于 2025-3-26 03:58:56 | 显示全部楼层
发表于 2025-3-26 07:46:47 | 显示全部楼层
Low Cycle Fatigue of Nitrogen Alloyed Martensitic Stainless Steelst is shown that silicon also influences the fatigue properties. High cyclic stress values can be obtained in nitrogen plus silicon rich steel which does not exhibit a good fatigue resistance. In such alloy, the plasticity is strongly dependent not only on the precipate state but also on the interact
发表于 2025-3-26 09:51:45 | 显示全部楼层
Low Cycle Fatigue of a Duplex Stainless Steel Alloyed with Nitrogenic stainless steel. The observed improvement in fatigue resistance by Nitrogen alloying is attributed to the planar dislocation slip, favoured by Nitrogen in the austenitic phase. The duplex steel exhibits, at all strain levels, a hardening-softening accommodation behaviour, which is characteristic
发表于 2025-3-26 15:14:27 | 显示全部楼层
Microstructurally-Based Simulation of Multiaxial Low-Cycle Fatigue Damage of 316L Stainless Steel insity which was determined experimentally. These microcracks propagate with a velocity which was also derived from metallographical observations. They subsequently coalesce to lead to final fracture when the calculated “plastic zone” sizes at the tip of two neighbouring cracks are overlapping. This m
发表于 2025-3-26 18:33:52 | 显示全部楼层
Study on Metallography of Low Cycle Creep Fatigue Fracture of Type 316 Stainless Steels The creep fatigue lives depend on the grainboundary precipitation during creep fatigue. Coarse carbides in SUS316 would cause grainboundary embrittlement, while very fine Laves phase in 316MN may have no influence. Since carbide precipitation by aging results in loss of matrix strength of SUS316, c
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 01:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表