找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Local Systems in Algebraic-Arithmetic Geometry; Hélène Esnault Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
楼主: 畸齿矫正学
发表于 2025-3-26 22:10:53 | 显示全部楼层
发表于 2025-3-27 01:42:02 | 显示全部楼层
发表于 2025-3-27 05:59:18 | 显示全部楼层
Lecture 7: Companions, Integrality of Cohomologically Rigid Local Systems and of the Betti Moduli Se (.-adic version) of it (L. Lafforgue (Invent Math 147(1):1–241, 2002, Théorème VII.6) in dimension 1, Drinfeld (Moscow Math J 12(3):515–542, 2012, Theorem 1.1) in higher dimension in the smooth case), explain how we used Drinfeld’s theorem in the proof of Simpson’s integrality conjecture for cohom
发表于 2025-3-27 12:23:39 | 显示全部楼层
Lecture 8: Rigid Local Systems and ,-Isocrystals, of ., yield .-isocrystals. This is proved in Esnault and Groechenig (Acta Math 225(1):103–158, 2020, Theorem 1.6), using the theory of Higgs-de Rham flows on the mod . reduction of .. We give here a .-adic proof of this theorem, obtained with Johan de Jong, which relies on the fact that for ., the
发表于 2025-3-27 13:44:11 | 显示全部楼层
发表于 2025-3-27 20:47:55 | 显示全部楼层
0075-8434 e presently out of reach.Proposes sub-conjectures that mightThe topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear representations modulo conjugation, that is, its complex local systems. A fundamental pro
发表于 2025-3-28 00:23:44 | 显示全部楼层
发表于 2025-3-28 03:21:15 | 显示全部楼层
发表于 2025-3-28 09:28:12 | 显示全部楼层
Lecture 7: Companions, Integrality of Cohomologically Rigid Local Systems and of the Betti Moduli Sow we combined this idea together with de Jong’s conjecture in order to define and obtain an integrability property of the Betti moduli space (de Jong and Esnault, Integrality of the Betti moduli space, 18 pp. Trans. AMS, to appear, Theorem 1.1).
发表于 2025-3-28 13:39:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 03:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表