找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Local Systems in Algebraic-Arithmetic Geometry; Hélène Esnault Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
楼主: 畸齿矫正学
发表于 2025-3-23 13:28:03 | 显示全部楼层
发表于 2025-3-23 14:08:07 | 显示全部楼层
Hélène Esnault(Over)view on the relation between local systems in complex algebraic geometry and in arithmetic geometry.Discusses deep conjectures that are presently out of reach.Proposes sub-conjectures that might
发表于 2025-3-23 21:14:43 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/l/image/587717.jpg
发表于 2025-3-23 22:34:12 | 显示全部楼层
https://doi.org/10.1007/978-3-031-40840-3Motives; Local Systems; Hodge Theory; p-adic Hodge Theory; Algebraic Geometry; Complex Local Systems; l-ad
发表于 2025-3-24 04:16:25 | 显示全部楼层
发表于 2025-3-24 08:35:24 | 显示全部楼层
Lecture 5: Interlude on Some Difference Between the Fundamental Groups in Characteristic 0 and ,See the Abstract of Chap. .: we show here the existence of an obstruction to lift a smooth (quasi-)projective variety defined over an algebraically closed field . of characteristic . to characteristic 0 which relies purely on the shape of its (tame) fundamental group.
发表于 2025-3-24 14:10:02 | 显示全部楼层
发表于 2025-3-24 16:08:14 | 显示全部楼层
发表于 2025-3-24 19:50:41 | 显示全部楼层
,Lecture 3: Malčev-Grothendieck’s Theorem, Its Variants in Characteristic ,, Gieseker’s Conjecture, lgebraic completion. We recall Grothendieck’s version of it formulated with .-modules using the Riemann-Hilbert correspondence, then the Gieseker conjecture, its counterpart in characteristic ., its solution and generalizations.
发表于 2025-3-25 02:11:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 03:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表