找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Linear Algebra Through Geometry; Thomas Banchoff,John Wermer Textbook 1992Latest edition Springer-Verlag New York, Inc. 1992 Eigenvalue.Li

[复制链接]
楼主: 年迈
发表于 2025-3-28 17:05:36 | 显示全部楼层
发表于 2025-3-28 19:26:09 | 显示全部楼层
Products of Linear Transformations,Let . and . be two linear transformations. We define the transformation . which consists of . followed by ., i.e., if . is any vector.We write . = . and we call ..
发表于 2025-3-29 02:58:38 | 显示全部楼层
发表于 2025-3-29 05:30:48 | 显示全部楼层
Determinants,Let . be a linear transformation with matrix .. The quantity.is called the determinant of the matrix . and is denoted.Expressed in these terms, Theorem 2.4 states that . has an inverse if and only if . We shall see that the determinant gives us further information about the behavior of ..
发表于 2025-3-29 08:48:08 | 显示全部楼层
发表于 2025-3-29 13:11:07 | 显示全部楼层
发表于 2025-3-29 17:12:17 | 显示全部楼层
Vector Geometry in 3-Space,Just as in the plane, we may use vectors to express the analytic geometry of 3-dimensional space.
发表于 2025-3-29 22:52:58 | 显示全部楼层
发表于 2025-3-30 02:52:06 | 显示全部楼层
Sums and Products of Linear Transformations,If . and . are linear transformations, then we may define a new transformation . + . by the condition.Then by definition, (. + .)(. + .) = .(. + .) + .(. + .), and since . and . are linear transformations, this equals .(.) + .(.) + .(.) + .(.) = .(.) + .(.) + .(.) + .(.) = (. + .)(.) + (. + .)(.). Thus for every pair ., we have
发表于 2025-3-30 06:20:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 19:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表