找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Limit Theorems for Stochastic Processes; Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting

[复制链接]
查看: 43164|回复: 45
发表于 2025-3-21 17:24:08 | 显示全部楼层 |阅读模式
书目名称Limit Theorems for Stochastic Processes
编辑Jean Jacod,Albert N. Shiryaev
视频video
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Limit Theorems for Stochastic Processes;  Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting
描述Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an elementary introduction to the main topics: theory of martingales and stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to gradua
出版日期Book 19871st edition
关键词Martingal; Martingale; Semimartingal; Semimartingale; Variation; diffusion process; statistics; stochastic
版次1
doihttps://doi.org/10.1007/978-3-662-02514-7
isbn_ebook978-3-662-02514-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

书目名称Limit Theorems for Stochastic Processes影响因子(影响力)




书目名称Limit Theorems for Stochastic Processes影响因子(影响力)学科排名




书目名称Limit Theorems for Stochastic Processes网络公开度




书目名称Limit Theorems for Stochastic Processes网络公开度学科排名




书目名称Limit Theorems for Stochastic Processes被引频次




书目名称Limit Theorems for Stochastic Processes被引频次学科排名




书目名称Limit Theorems for Stochastic Processes年度引用




书目名称Limit Theorems for Stochastic Processes年度引用学科排名




书目名称Limit Theorems for Stochastic Processes读者反馈




书目名称Limit Theorems for Stochastic Processes读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:20:41 | 显示全部楼层
https://doi.org/10.1007/978-3-662-02514-7Martingal; Martingale; Semimartingal; Semimartingale; Variation; diffusion process; statistics; stochastic
发表于 2025-3-22 04:20:41 | 显示全部楼层
The General Theory of Stochastic Processes, Semimartingales and Stochastic Integrals,The “General Theory of Stochastic Processes”, in spite of its name, encompasses the rather restrictive subject of stochastic processes indexed by ℝ.. But, within this framework, it expounds deep properties related to the order structure of ℝ., and martingales play a central rôle.
发表于 2025-3-22 05:33:50 | 显示全部楼层
发表于 2025-3-22 09:22:01 | 显示全部楼层
发表于 2025-3-22 13:44:46 | 显示全部楼层
Limit Theorems, Density Processes and Contiguity,Let us roughly describe the problems which will retain our attention in this last chapter.
发表于 2025-3-22 19:33:43 | 显示全部楼层
发表于 2025-3-23 00:48:02 | 显示全部楼层
发表于 2025-3-23 04:39:52 | 显示全部楼层
发表于 2025-3-23 06:08:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 12:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表