找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lie Sphere Geometry; With Applications to Thomas E. Cecil Book 2008Latest edition Springer-Verlag New York 2008 Dimension.Grad.curvature.di

[复制链接]
查看: 52043|回复: 35
发表于 2025-3-21 16:48:23 | 显示全部楼层 |阅读模式
书目名称Lie Sphere Geometry
副标题With Applications to
编辑Thomas E. Cecil
视频video
概述Provides the reader with all the necessary background to reach the frontiers of research in this area.Fills a gap in the literature; no other thorough examination of Lie sphere geometry and its applic
丛书名称Universitext
图书封面Titlebook: Lie Sphere Geometry; With Applications to Thomas E. Cecil Book 2008Latest edition Springer-Verlag New York 2008 Dimension.Grad.curvature.di
描述.This book provides a clear and comprehensive modern treatment of Lie sphere geometry and its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. The link with Euclidean submanifold theory is established via the Legendre map, which provides a powerful framework for the study of submanifolds, especially those characterized by restrictions on their curvature spheres...This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry....Further key features of Lie Sphere Geometry 2/e:..- Provides the reader with all the necessary background to reach the frontiers of research in this area..- Fills a gap in the literature;
出版日期Book 2008Latest edition
关键词Dimension; Grad; curvature; differential geometry; manifold; projective geometry
版次2
doihttps://doi.org/10.1007/978-0-387-74656-2
isbn_softcover978-0-387-74655-5
isbn_ebook978-0-387-74656-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2008
The information of publication is updating

书目名称Lie Sphere Geometry影响因子(影响力)




书目名称Lie Sphere Geometry影响因子(影响力)学科排名




书目名称Lie Sphere Geometry网络公开度




书目名称Lie Sphere Geometry网络公开度学科排名




书目名称Lie Sphere Geometry被引频次




书目名称Lie Sphere Geometry被引频次学科排名




书目名称Lie Sphere Geometry年度引用




书目名称Lie Sphere Geometry年度引用学科排名




书目名称Lie Sphere Geometry读者反馈




书目名称Lie Sphere Geometry读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:08:36 | 显示全部楼层
发表于 2025-3-22 04:04:12 | 显示全部楼层
0172-5939 r thorough examination of Lie sphere geometry and its applic.This book provides a clear and comprehensive modern treatment of Lie sphere geometry and its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of
发表于 2025-3-22 05:33:29 | 显示全部楼层
发表于 2025-3-22 09:37:49 | 显示全部楼层
Lie Sphere Transformations,This is followed by a treatment of Laguerre geometry in Section 3.4. Finally, in Section 3.5, we show that the Lie sphere group is generated by the union of the groups of Möbius and Laguerre. There we also describe the place of Euclidean, spherical and hyperbolic metric geometries within the context of these more general geometries.
发表于 2025-3-22 13:25:10 | 显示全部楼层
https://doi.org/10.1007/978-0-387-74656-2Dimension; Grad; curvature; differential geometry; manifold; projective geometry
发表于 2025-3-22 19:42:54 | 显示全部楼层
Thomas E. CecilProvides the reader with all the necessary background to reach the frontiers of research in this area.Fills a gap in the literature; no other thorough examination of Lie sphere geometry and its applic
发表于 2025-3-22 22:51:19 | 显示全部楼层
Universitexthttp://image.papertrans.cn/l/image/585714.jpg
发表于 2025-3-23 03:38:33 | 显示全部楼层
发表于 2025-3-23 07:02:55 | 显示全部楼层
Legendre Submanifolds,In this chapter, we develop the framework necessary to study submanifolds within the context of Lie sphere geometry.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 16:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表