找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lie Groups; Daniel Bump Textbook 2013Latest edition Springer Science+Business Media New York 2013 Frobenius-Schur duality.Keating-Snaith f

[复制链接]
楼主: 佯攻
发表于 2025-3-23 13:12:35 | 显示全部楼层
Haar MeasureIf . is a locally compact group, there is, up to a constant multiple, a unique regular Borel measure .. that is invariant under left translation. Here . means that .(.) = .(.) for all measurable sets ..
发表于 2025-3-23 17:36:00 | 显示全部楼层
Schur OrthogonalityIn this chapter and the next two, we will consider the representation theory of compact groups. Let us begin with a few observations about this theory and its relationship to some related theories.
发表于 2025-3-23 19:49:22 | 显示全部楼层
Compact OperatorsIf . is a normed vector space, a linear operator . is called . if there exists a constant . such that . for all .. In this case, the smallest such . is called the . of ., and is denoted |.|.
发表于 2025-3-23 22:27:43 | 显示全部楼层
The Peter–Weyl TheoremIn this chapter, we assume that . is a compact group. Let .(.) be the convolution ring of continuous functions on .. It is a ring (without unit unless . is finite) under the multiplication of .:
发表于 2025-3-24 06:00:29 | 显示全部楼层
发表于 2025-3-24 10:10:52 | 显示全部楼层
The Exponential MapThe exponential map, introduced for closed Lie subgroups of . in ., can be defined for a general Lie group . as a map Lie(.) → ..
发表于 2025-3-24 13:45:15 | 显示全部楼层
发表于 2025-3-24 16:44:27 | 显示全部楼层
发表于 2025-3-24 20:04:27 | 显示全部楼层
发表于 2025-3-25 00:13:16 | 显示全部楼层
The Universal CoverIf . is a Hausdorff topological space, a . is a continuous map . : [0,1].. The path is . if the endpoints coincide : .(0) = .(1). A closed path is also called a ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 08:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表