找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lie Groups; Daniel Bump Textbook 2013Latest edition Springer Science+Business Media New York 2013 Frobenius-Schur duality.Keating-Snaith f

[复制链接]
查看: 21022|回复: 58
发表于 2025-3-21 17:21:13 | 显示全部楼层 |阅读模式
书目名称Lie Groups
编辑Daniel Bump
视频video
概述New edition extensively revised and updated.Includes new material on random matrix theory, such as the Keating-Snaith formula.Contains material on the use of Sage for Lie group problems.Includes more
丛书名称Graduate Texts in Mathematics
图书封面Titlebook: Lie Groups;  Daniel Bump Textbook 2013Latest edition Springer Science+Business Media New York 2013 Frobenius-Schur duality.Keating-Snaith f
描述.This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one‘s interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition..For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(.n.) × GL(.m.) duality with many applications includ
出版日期Textbook 2013Latest edition
关键词Frobenius-Schur duality; Keating-Snaith formula; Lie algebras; Lie groups; complex analytic groups; conju
版次2
doihttps://doi.org/10.1007/978-1-4614-8024-2
isbn_softcover978-1-4939-3842-1
isbn_ebook978-1-4614-8024-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

书目名称Lie Groups影响因子(影响力)




书目名称Lie Groups影响因子(影响力)学科排名




书目名称Lie Groups网络公开度




书目名称Lie Groups网络公开度学科排名




书目名称Lie Groups被引频次




书目名称Lie Groups被引频次学科排名




书目名称Lie Groups年度引用




书目名称Lie Groups年度引用学科排名




书目名称Lie Groups读者反馈




书目名称Lie Groups读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:24:31 | 显示全部楼层
发表于 2025-3-22 01:11:30 | 显示全部楼层
发表于 2025-3-22 07:28:36 | 显示全部楼层
发表于 2025-3-22 11:55:40 | 显示全部楼层
Lie Groups978-1-4614-8024-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
发表于 2025-3-22 15:38:03 | 显示全部楼层
发表于 2025-3-22 17:56:57 | 显示全部楼层
发表于 2025-3-22 23:14:12 | 显示全部楼层
发表于 2025-3-23 02:01:24 | 显示全部楼层
Geodesics and Maximal Torill deduce it from the surjectivity of the exponential map, which we will prove by showing that a geodesic between the origin and an arbitrary point of the group has the form . for some . in the Lie algebra.
发表于 2025-3-23 08:37:10 | 显示全部楼层
The Weyl Integration Formulae to compute the Haar integral of a class function (e.g., the inner product of two characters) as an integral over the torus. The formula that allows this, the ., is therefore fundamental in representation theory and in other areas, such as random matrix theory.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 08:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表