找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures on the Nearest Neighbor Method; Gérard Biau,Luc Devroye Book 2015 Springer International Publishing Switzerland 2015 Density Esti

[复制链接]
楼主: STRI
发表于 2025-3-25 07:24:27 | 显示全部楼层
Weighted ,-nearest neighbor density estimatesThere are different ways to weigh or smooth the .-nearest neighbor density estimate. Some key ideas are surveyed in this chapter. For some of them, consistency theorems are stated.
发表于 2025-3-25 10:19:11 | 显示全部楼层
Pointwise consistencyTheorem 11.1 below is a slight extension of a theorem due to Devroye (1981a). It offers sufficient conditions on the probability weight vector guaranteeing that the (raw) nearest neighbor estimate (8.2) satisfies, for all . ≥ 1.
发表于 2025-3-25 14:36:06 | 显示全部楼层
Uniform consistencyThe supremum creates two problems—first of all, by moving . about ., the data ordering changes. We will count the number of possible data permutations in the second section. Second, we need a uniform condition on the “noise” . − .(.) so that the averaging done by the weights .. is strong enough. This is addressed in the third section.
发表于 2025-3-25 19:21:31 | 显示全部楼层
Advanced properties of uniform order statisticsVarious properties of ., uniform [0, 1] order statistics, will be needed in the analysis that follows. These are collected in the present chapter. The first group of properties is directly related to .. (1 ≤ . ≤ .), while the second group deals with random linear combinations of them.
发表于 2025-3-25 23:42:56 | 显示全部楼层
发表于 2025-3-26 00:27:29 | 显示全部楼层
aching and learning the Chinese language...The wide-ranging contributions make the book an attractive resource for academics, think-tanks, diplomats, and researchers working on Asian/India–China studies across 978-981-99-4328-9978-981-99-4326-5
发表于 2025-3-26 04:29:08 | 显示全部楼层
broad implications for developing countries in general and India in particular. This book will greatly benefit trade negotiators, policymakers, civil society, farmer groups, researchers, students, and academic978-981-33-6856-9978-981-33-6854-5Series ISSN 2198-0012 Series E-ISSN 2198-0020
发表于 2025-3-26 10:17:37 | 显示全部楼层
发表于 2025-3-26 14:23:13 | 显示全部楼层
发表于 2025-3-26 20:18:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 02:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表