找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures on Numerical Radius Inequalities; Pintu Bhunia,Silvestru Sever Dragomir,Kallol Paul Book 2022 The Editor(s) (if applicable) and T

[复制链接]
楼主: 无力向前
发表于 2025-3-25 05:44:25 | 显示全部楼层
Pintu Bhunia,Silvestru Sever Dragomir,Mohammad Sal Moslehian,Kallol Paul
发表于 2025-3-25 10:13:31 | 显示全部楼层
发表于 2025-3-25 13:38:35 | 显示全部楼层
发表于 2025-3-25 19:22:40 | 显示全部楼层
发表于 2025-3-25 23:15:00 | 显示全部楼层
Book 2022 spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing..This monograph is intended for use by both researchers and gradu
发表于 2025-3-26 02:49:07 | 显示全部楼层
978-3-031-13672-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-26 07:26:33 | 显示全部楼层
Lectures on Numerical Radius Inequalities978-3-031-13670-2Series ISSN 2363-6149 Series E-ISSN 2363-6157
发表于 2025-3-26 10:32:48 | 显示全部楼层
Fundamental Numerical Radius Inequalities,erator . on a complex Hilbert space ., to be denoted by .(.),  is defined as the range of the continuous mapping . defined on the unit sphere of the Hilbert space ., that is, The study of numerical range assists in understanding the behavior of a bounded linear operator.
发表于 2025-3-26 13:46:40 | 显示全部楼层
,Bounds of the Numerical Radius Using Buzano’s Inequality,sky–Schwarz inequality. The elementary form of Cauchy–Schwarz inequality states that if . and . are real numbers, then .Its general form in an inner-product space is (.). The Cauchy–Schwarz inequality was wonderfully refined in 1971 by Buzano [49].
发表于 2025-3-26 17:33:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 09:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表