找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures in Knot Theory; An Exploration of Co Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks Textbook 2024 The Editor(s) (if applicable

[复制链接]
查看: 27561|回复: 61
发表于 2025-3-21 19:57:10 | 显示全部楼层 |阅读模式
书目名称Lectures in Knot Theory
副标题An Exploration of Co
编辑Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks
视频video
概述Explores contemporary topics including skein modules, Khovanov homology and Gram determinants motivated by knots.Lectures begin with an historical overview of a topic and gives motivation for the deve
丛书名称Universitext
图书封面Titlebook: Lectures in Knot Theory; An Exploration of Co Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks Textbook 2024 The Editor(s) (if applicable
描述.This text is based on lectures delivered by the first author on various, often nonstandard, parts of knot theory and related subjects. By exploring contemporary topics in knot theory including those that have become mainstream, such as skein modules, Khovanov homology and Gram determinants motivated by knots, this book offers an innovative extension to the existing literature. Each lecture begins with a historical overview of a topic and gives motivation for the development of that subject. Understanding of most of the material in the book requires only a basic knowledge of topology and abstract algebra. The intended audience is beginning and advanced graduate students, advanced undergraduate students, and researchers interested in knot theory and its relations with other disciplines within mathematics, physics, biology, and chemistry..Inclusion of many exercises, open problems, and conjectures enables the reader to enhance their understanding of the subject. The use of this text for the classroom is versatile and depends on the course level and choices made by the instructor. Suggestions for variations in course coverage are included in the Preface. The lecture style and array of
出版日期Textbook 2024
关键词Knots and links; Fox colorings; Gram determinants; History of knots; Jones polynomial; Khovanov homology;
版次1
doihttps://doi.org/10.1007/978-3-031-40044-5
isbn_softcover978-3-031-40043-8
isbn_ebook978-3-031-40044-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Lectures in Knot Theory影响因子(影响力)




书目名称Lectures in Knot Theory影响因子(影响力)学科排名




书目名称Lectures in Knot Theory网络公开度




书目名称Lectures in Knot Theory网络公开度学科排名




书目名称Lectures in Knot Theory被引频次




书目名称Lectures in Knot Theory被引频次学科排名




书目名称Lectures in Knot Theory年度引用




书目名称Lectures in Knot Theory年度引用学科排名




书目名称Lectures in Knot Theory读者反馈




书目名称Lectures in Knot Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:34:24 | 显示全部楼层
Universitexthttp://image.papertrans.cn/l/image/583451.jpg
发表于 2025-3-22 01:43:43 | 显示全部楼层
978-3-031-40043-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 06:45:04 | 显示全部楼层
Lectures in Knot Theory978-3-031-40044-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
发表于 2025-3-22 11:28:23 | 显示全部楼层
https://doi.org/10.1007/978-3-031-40044-5Knots and links; Fox colorings; Gram determinants; History of knots; Jones polynomial; Khovanov homology;
发表于 2025-3-22 15:56:03 | 显示全部楼层
发表于 2025-3-22 20:56:25 | 显示全部楼层
Goeritz and Seifert Matrices,the checkerboard coloring of a link diagram and the second using an oriented surface bounded by a link. We discuss several link invariants coming from the matrix including the determinant, the signature, the Alexander-Conway polynomial, and the Tristram-Levine signature.
发表于 2025-3-22 22:35:05 | 显示全部楼层
The Jones Polynomial and Kauffman Bracket Polynomial,s lecture, we describe basic properties of these polynomials including mysterious relations with Fox 3 −coloring. We also discuss Montesinos-Nakanishi 3 −move conjecture and its solution using the Burnside group of link. We end by discussing the Nakanishi 4-move conjecture, from 1979.
发表于 2025-3-23 03:19:08 | 显示全部楼层
The Temperley-Lieb Algebra and the Artin Braid Group,not theory and 3-manifold invariants. For example, its connection to knot theory stems from Louis H. Kauffman’s interpretation of the Temperley-Lieb algebra as a diagrammatic algebra consisting of .-tangles as its basis. In this lecture we explore the basics of the Temperley-Lieb algebra and Artin braid group.
发表于 2025-3-23 08:14:48 | 显示全部楼层
The Kauffman Bracket Skein Module and Algebra of Surface I-Bundles,ter varieties, cluster algebras, and quantum Teichmüller spaces. In this lecture we explore some of these connections and discuss the structure of the Kauffman bracket skein algebras of several thickened surfaces.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 05:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表